
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Τεχνολογία Λογισμικού, 7ο εξάμηνο 2019-2020

Τεχνολογία Λογισμικού

Ν.Παπασπύρου, Αν.Καθ. ΣΗΜΜΥ, nickie@softlab.ntua,gr

Β.Βεσκούκης, Αν.Καθ. ΣΑΤΜ, v.vescoukis@cs.ntua,gr

Κ.Σαΐδης, ΠΔ 407, saiko@softlab.ntua.gr

Εισαγωγή στη UML

Unified Modeling Language

OMG Standard, Object Management Group

n Based on work from Booch, Rumbaugh, Jacobson

UML is a modeling language to express and design documents,
software, systems and more

n Created with OO analysis and design,
but has evolved to cover more than software systems

n UML is NOT a methodology, process, etc

n Independent of implementation language

Unified Modeling Language

Open Standard, Graphical notation for Software Systems, from initial
conception to detailed design, across the entire software lifecycle

n specification

n visualization

n construction

n documentation

Support understanding of software to customers and developers

Support for diverse application areas

Based upon experience and needs of the user community

History

UML concepts

Systems, Models, Views

n A model is an abstraction describing a subset of a system

n A view depicts selected aspects of a model

n A notation is a set of graphical or textual rules for depicting views

n Views and models of a single system may overlap each other

Example

n System: Aircraft

n Models: Flight simulator, scale model

n Views: All blueprints, electrical wiring, fuel system

UML models, views, diagrams

UML defines many diagrams, each of which is a view into a model

n Diagram presented from the aspect of a particular stakeholder

n Provides a partial representation of the system

n Is semantically consistent with other views

UML diagrams

Static views Dynamic views

UML diagrams

Visual Paradigm CE

Visual Paradigm online

UML views: focus on what’s needed

Not all systems require all views

n Single execution node: drop deployment view

n Single process: drop process view

n Very small program: drop implementation view

A system might need additional views

n Data view, security view, …

Identification of “useful” views depends on the context and
intended use of the UML model of a system

n Communication with the client

n System specification

n System design

A key concept: stereotypes

Stereotype:
A mechanism for extending the vocabulary (and thus, the expressive
power) of UML

Why extend the vocabulary?

n Ecosystem- / stack- / framework- specific terminology

n Comprehensive architecture visualization

Use with measure!

actor boundary entity control

Basic UML modeling

Use Cases

n Capture requirements

Domain Model

n Capture process, key classes

Design Model

n Capture details and behaviors of use cases and domain objects

n Add classes that do the work and define the architecture

Basic UML modeling

Use Case Diagrams

Class Diagrams / Package Diagrams

Interaction Diagrams

n Sequence Diagrams

n Collaboration (a.k.a. Communication Diagrams)

Activity Diagrams / State Transition Diagrams

Component Diagrams / Deployment Diagrams

Use Case diagrams

What is a Use Case – key concepts

n Use cases represent a sequence of interaction(s) for a type of functionality

n Actors represent roles. A role is a type of user of the system, and can even
be another system (external system)

n Used during requirements elicitation to represent external behavior

The use case model is the set of all use cases. It is a complete
description of the functionality of the system and its environment

Use cases vs. Requirements

A Use Case usually groups some requirements together in the context of
an interaction of the system with some external entity.

The granularity of the requirements’ definition determines the level of
grouping requirements in use cases

Use Cases and Actors

An actor models an external entity which communicates with the system
and triggers some of its functionality:

n User

n External system

n Physical environment

An actor has a unique name and an optional description

Examples:

n Passenger: A person issuing a ticket

n GPS device: Provides the system with GPS coordinates

Use Cases and Actors

A use case represents a class of functionality
provided by the system as an event flow

A use case consists of:

n Unique name

n Participating actors

n Entry conditions

n Flow of events

n Exit conditions

n Special requirements

Use Case: example

Unique name

n Υποβολή δεδομένων xls(x)

Participating actors

n Διαχειριστής dashboard

Entry conditions

n xls(x) file is available; server has enough disk space free

Flow of events

n User drags file to designated area; file is uploaded to the server

Exit conditions

n File is saved on the server

Use Case diagrams: <<include>> and <<extend>>

Include:

n Behavior that has been
factored out of the Use
Case, so that it can be re-
used

n Arrow points to the ”using”
Use Case

Extends

n Exceptional, rarely invoked
Use Cases

n Arrow points to the extended
Use Case

Use Case Diagrams are useful for…

Determining requirements

n New use cases often generate new requirements as the system is
analyzed and the design takes shape.

Communicating with clients

n Their notational simplicity makes use case diagrams a good way for
developers to communicate with clients.

Generating test cases

n The collection of scenarios for a use case may suggest a suite of test cases
for those scenarios.

Use case descriptions provide the info needed: not use case diagrams!
All use cases need to be described for the model to be useful.

Use Case Diagrams

A complete Use Case
model (diagram)

Class Diagrams

A Class Diagram…

Gives an overview of a system by showing its classes and the
relationships among them.

n class diagrams are static

n they display what interacts but not what happens when interactions occur

Also shows attributes and operations of each class

Good way to describe the overall architecture of system components

Class Diagram: Perspectives

We draw Class Diagrams under three perspectives

n Conceptual
m Software independent
m Language independent

n Specification
m Focus on the interfaces of the software

n Implementation
m Focus on the implementation of the software

Classes: Not Just for Code

A class represent a concept

A class encapsulates state
(attributes) and behavior (operations).

Each attribute has a type.

Each operation has a signature.

The class name is the only
mandatory information.

Instances

An instance represents a phenomenon (= a specific object).

The name of an instance is underlined and can contain the class of the
instance.

The attributes are represented with their values.

Class diagram Object diagram

UML Class Notation

A class is a rectangle divided into three parts

n Class name

n Class attributes (i.e. fields, variables)

n Class operations (i.e. methods)

Modifiers

n Private: -

n Public: +

n Protected: #

n Static: Underlined (i.e. shared among all members of the class)

Abstract class: name in italics

UML Class Notation: Relationships

Association

n A relationship between instances of two classes, where one class must
know about the other to do its work, e.g. client communicates to server

n Indicated by a straight line or arrow

Aggregation

n An association where one class belongs to a collection

n Indicated by an empty diamond on the side of the collection

n Members can exist independently of the aggregate ("parent")
e.g.: students exist even if there is no class scheduled

Association Details

Can assign names to the ends of the association
to give further information

Employee
-Name : string
+ID : long
#Salary: double
-adfaf :bool
+getName() : string
+setName()
-calcInternalStuf(fin x : byte, in y :decima)l

Team
-members: Employee

-group
-individual
1

*

UML Class Notation

Composition

n Strong form of Aggregation

n Lifetime control: components cannot exist without the
aggregate (e.g.: parts of an aircraft)

n Indicated by a solid diamond on the side of the
collection

Inheritance

n Inheritance represents a "is-a" relationship

n Key element of object orientation

n Indicated by a hollow arrowhead pointing to the
superclass ("parent")

UML Class diagram notation

UML Multiplicities

Links on associations to specify more details about the relationship

Multiplicities Meaning

0..1 zero or one instance. n . . m indicates n to m instances.

0..* or * zero to unlimited instances

1 exactly one instance

1..* at least one instance

UML Class Diagram example

UML Class Diagram Example

Class diagram: Software architecture

Architecture
Description 101

 | 19

Remember: The map
is not the territory

Class diagram: OCG Simple Features Std

Static vs. Dynamic Design

Static design describes code structure and object relations

n Class relations

n Objects at design time

n Doesn’t change

Dynamic design shows communication between objects

n Similarity to class relations

n Can follow sequences of events

n May change depending upon execution scenario

n Called Object Diagrams

Object diagrams

Shows instances of Class Diagrams and links among them:
An object diagram is a snapshot of the objects in a system at a point in
time

Object diagrams focus on representing...

n Interactions – Sequence diagram

n Message passing – Collaboration diagram

n Operation – Deployment diagram

Interactions modeling: Sequence diagrams

Interaction diagrams describe how objects collaborate.

A Sequence Diagram:

n Indicates what messages are sent and when

n Time progresses from top to bottom

n Objects involved are listed left to right

n Messages are sent left to right between objects in sequence

Interactions modeling: Sequence diagrams

Interactions modeling: Sequence diagrams

Actor

Lifeline

Activation

Messages: call, return, self

Focus of control: also called execution occurrence

n A tall, thin rectangle on a lifeline

n It represents the period during which an element is performing an operation.
The top and the bottom of the rectangle are aligned with the initiation and
the completion time respectively.

Interactions modeling: Sequence diagrams

Interactions modeling: Sequence diagram

Interactions modeling: Collaboration diagrams

Collaboration Diagrams show similar information to sequence diagrams,
BUT the vertical sequence is missing. Instead sequence diagrams use:

n Object Links - solid lines between the objects that interact

n On the links are Messages - arrows with one or more message name that
show the direction and names of the messages sent between objects

Emphasis is on static links as opposed to sequence (= timing, order of
things) in the sequence diagram

a.k.a. Communication diagrams

Collaboration diagram example

Collaboration diagram example

Collaboration diagram example

Collaboration diagram example

Interactions modeling: Activity diagrams

Modeling of the dynamic aspects of a system, component, etc.

Similar to "old school" graphical representation of algorithms

Concepts

n Activity / action

n Flow (control / object)

n Initial / final node

n Decision / merge

n Fork / join

Activity diagram example

Activity diagram example

Activity diagram example

Activity diagram example

Activity diagram example

Activity diagram example

UML State diagrams

Used to model behavior diagram in UML, usually refer to a single class

n to show the lifetime behavior of a single object

n to describe all of the possible states of a particular object or the system

A state is like a 'mode of operation' for objects of a class, which behave
differently depending on their state (if applicable)

UML State diagrams

Events trigger transitions between states

n Signal event: the arrival of an asynchronous message or signal

n Call event: the arrival of a procedural call to an operation

n Time event: occurs after a specified time has elapsed

n Change event: occurs whenever a specified condition is met

Transitions between states occur as follows:

n An element is in a source state

n An event occurs

n An action is performed

n The element enters a target state

Component diagrams / Package diagrams

Display components in a system and their dependencies + interfaces

n Explain the structure of a system

n Usually a physical collection of classes

Component vs package Diagrams:

n Component: all of the model elements are private with a public interface

n Package: only display public items

Both are used to group elements
into logical structures

Component diagram examples

Component diagram examples

Deployment diagrams

Show the physical architecture of the hardware and software of the
deployed system

Nodes

n Typically contain components or packages

n Usually some kind of computational unit; e.g. machine or device (physical
or logical)

Physical relationships among software and hardware

n Explain how a
system interacts
with the external
environment

Deployment diagram example 1a

Deployment diagram example 1b

Deployment diagram example 2a

Deployment diagram example 2b

Deployment diagram example 2c

