01 Eloaywyn

2X0AN HAektpoAoywv Mnxavikwv & Mnxavikwy YTTOAOYLOTWVY
EOviko Metoofo MNMoAvtexveio

Xelpuepvo g€aunvo 2017-18

Ap. Kwotog 2aidng (saiko@di.uoa.gr)


mailto:saiko@di.uoa.gr

AladiIkaolo avaTTUENG ULKPOU KOl
OTTAOU AOYLOMLKOU

ANALYSIS

W.W. Royce, www-
scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf


http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf

Avantuén peyAov kot cuvOetov
AOYLOULKOV);
TexvoAoyia AOYLOULKOU

MeBodoAoyieg, TeEXVOAOYLEG, EPYOAELN KL TIPAKTIKEG YL T BEATIOTN
vAoTtoinon cVVOETWVY £PpywVv AOYLOULKOU



TexvoAoyiot AOYLOULKOU

e MeyaAa epya

* Mg TTOAAEG KOl HEYOAEG OUAOEC

e Me TTOAUTIAOKEC OTIAITNOELG

* MEg OLKOYEVELEC EQAPUOYWV

* Mg TTOAEG TIOAPAAANAEG OAAQYEC KOl EKOOTELG

e [1OU XPNOLUOTIOLOVVTAL YLO TIOAAG X POVIX



TexvoAoyia AOYLOMLIKOU
[Tl oG OTTOOXOAEL N TEXVOAOYLO AOYLOLKOV;

[Tl TO AOYLOMLKO, OV KOl KATEXEL TIAEOV, ONpaivovTa pOAO o€
OAeG oXEOOV TIG OPACTNPLOTNTEG TNG AVOPWTOTNTAG ELVOL TTOAV
dUokoAOo va avamntuxOel "owota"!



>WOTA;

* EVTOC TIPOUTIOALTUOU

e Eykaipa

* |KOVOTIOWVTOG TIANPWG TOUE XPNOTEC TOU

e Xwplig AdBOn Kot TtpoPANUaTO 0TN AElTOLPYIX TOU

e Na sival a&loTioTo, va eilval eDKoAo va cuvtnpenOEl, va
ETEKTAOEL, KTA.



TL TO LOLAITEPO EXEL N AVATITLVEN
AOYLOMULKOV);

[lati eival SuokKoAo va yivel "owaotd”,;

Most software today is very much like an Egyptian pyramid
with millions of bricks piled on top of each other, with no
structural integrity, but just done by brute force and

thousands of slaves.”

Alan Kay



Alan Kay

e "Alan Curtis Kay is an American computer scientist ... best
known for his pioneering work on object-oriented
programming and windowing graphical user interface design."
(Wikipedia).

e Bpafeio Turing (2003).



‘Evag (miBavog) Adyog

2TO LEYOAQ QYA AOYLOMIKOU EUTIAEKOVTOL TIOANOL CUPUETEXOVTEG:

e XpNOTEG

o [TeAdTeC

e Aloiknon (akoupa kot Metoxol | EmevouTeg)
e [1POYPOAPUATIOTEG

* AOKIMOOTEQ

® >¥eOLOOTEG SLETTAPWV

e YmtevuBuvol £pyou

® KTA.



ETtopevwg

KaBe evag ammod Toug CUUPETEXOVTEG EXEL OLAPOPETIKEG EUTIELPLEC,
BlwpaTa, AQETNPIEC, OTOXOLC KL ETILOLWEELG OTIO TNV VAOTIOINCN
TOU £pPYOVU.

Eivaw SUokoAo va eTiiteux Bl Evag KOWVOG TOTIOG, CWOTA
LEPAPXNMEVOC VIO TO OPEAOG TOV £PYOV KO, CUVALQ,
LKOWWOTIOLNTLKOG YL OAOUG TOUG CUMUETEXOVTEG.

10



Agvtepog (TtBavog) Adyog

Most software estimates are performed at the beginning of
the life cycle. This makes sense until we realize that estimates
are obtained before the requirements are defined and thus
before the problem is understood. Estimation, therefore,
usually occurs at the wrong time.

Robert Glass

11



Robert Glass

e "Robert L. (Bob) Glass (born 1932) is an American software
engineer and writer, known for his works on software
engineering, especially on the measuring of the quality of
software design and his studies of the state of the art of
software engineering research." (Wikipedia)

12



Robert L. Glass, "Facts and Fallacies of Software Engineering”,
Addison Wesley, 2002, 0-321-11742-5.

13



Tpitog (TtBavog) Aoyog

2 eMieSO LVAOTIOINGNG, TO KUPLO TIPOPANUC Elval N
TtoAuTTAoKOTNTO (Complexity):

e Tu)ala TTOAVTTAOKOTNTA (accidental)

e ovolwdNng ToAuTtAokOTNTA (essential)
AKOMO KL OV YIVOUV OWOTEC EKTLUNOELG KOl fpeBel KOowvOg TOTOG,

EVQ €PYO AOYLOMLKOU UTIOPEL VO XTTOTUXEL AOYW TNG 0LdLWOOLG
TTOAUTTAOKOTNTAC TOV.

14



[ToAuTtAOKOTNTX

The function of good software is to make the complex appear
to be simple.

Grady Booch

15



Grady Booch

"Grady Booch (born February 27, 1955) is an American software
engineer, best known for developing the Unified Modeling
Language (UML) with Ivar Jacobson and James Rumbaugh. He is
recognized internationally for his innovative work in software
architecture, software engineering, and collaborative development
environments." (Wikipedia)

16



TL TO LOLAXITEPO EXEL N AVATITLVEN
AOYLOMULKOV);
Me T potadel Kat o€ TL OLa@PEPEL ATIO TO AN avOpwTIVaL Epyal KOl
TIPOLOVTQ;

Programming is an unnatural act.

Alan Perlis

17



Alan Perlis

e "Alan Jay Perlis (April 1, 1922 — February 7, 1990) was an
American computer scientist and professor at Yale University
known for his pioneering work in programming languages and
the first recipient of the Turing Award [To 1966!]" (Wikipedia).

18



Alan J. Perlis, "Epigrams on Programming", ACM SIGPLAN Notices,
Vol. 17, Issue 9, Sep. 1982, p. 7-13.
www.cs.yale.edu/~perlis-alan/quotes.html

19


http://www.cs.yale.edu/~perlis-alan/quotes.html

Av TO OKE@TELTE

To AOYLOMIKO:
® OEV UTIAPXEL (OEV EXEL (PUOLKH VTTOCTOON)

o OgV TEAELWVEL/OPLOTIKOTIOLELTOL TIOTE (EKTOC ATIO £VO/OV0 &

® TIPETIEL VO AEITOVPYEL/OLOTNPELTAL OE TIOAAEG TIAPAAANAEC
eKOOOELG

20



O vopog touv Wirth

H tox0tnTa He TNV OTola TO AOYLOUIKO YIVETAL TILO apyO €ival
LEYOAUTEPN OTIO TNV TAXVTNTA E TNV OTIOLX TO VALKO YIVETAL TTLO
YPNYOPO.

Were it not for a thousand times faster hardware, modern

software would be utterly unusable.

Niklaus Wirth

21



Niklaus Wirth

e "Niklaus Emil Wirth (born 15 February 1934) is a Swiss
computer scientist, best known for designing several
programming languages, including Pascal, and for pioneering
several classic topics in software engineering." (Wikipedia)

e Bpafeio Turing (1984).

22



N. Wirth, "A Plea for Lean Software", IEEE Computer, Vol 28, Issue 2,
Feb. 1995, p. 64-68.

23



Qyx!

The most amazing achievement of the computer software
industry is its continuing cancellation of the steady and
staggering gains made by the computer hardware industry.

Henry Petroski

24



e "Henry Petroski is an American engineer specializing in failure
analysis. A professor both of civil engineering and history at
Duke University, he is also a prolific author." (Wikipedia).

25



Henry Petroski, "To Engineer Is Human: The Role of Failure in
Successful Design", St. Martin's Press, 1985.

26



2Oipa ATIO QO L

So we hear desperate cries for a silver bullet, something to
make software costs drop as rapidly as computer hardware
costs do. But, as we look to the horizon of a decade hence, we
see no silver bullet. There is no single development, in either
technology or management technique, which by itself
promises even one order of magnitude improvement in
productivity, in reliability, in simplicity.

Fred Brooks

27



Fred Brooks

e "Frederick Phillips Brooks, Jr. (born April 19, 1931) is an
American computer architect, software engineer, and computer
scientist, best known for managing the development of IBM's
System/360 family of computers and the OS/360 software

support package, then later writing candidly about the process
in his seminal book The Mythical Man-Month." (Wikipedia).

e Bpafeio Turing (1999).

28



Fred P. Brooks, "No Silver Bullet — Essence and Accident in
Software Engineering”, Proceedings of the IFIP Tenth World
Computing Conference, April 1987, p. 1069-1076.
http://www.cs.nott.ac.uk/~pszcah/G511SS/Documents/NoSilverBulle
t.html

Fred P. Brooks, "The Mythical Man Month", Addison-Wesley, 1975,
0-201-00650-2.

29


http://www.cs.nott.ac.uk/~pszcah/G51ISS/Documents/NoSilverBullet.html

O MuOko¢ avBpwTtto-pnvog

H tpooOnkn avBpwTto-ipoonaBelag os eva apyoTIopnEVO £PYO
AOYLOUIKOU TO KaBLOTEPEL OKOUO TIEPLOCOTEPO!

30



[MeplexOpeva OLOAEEEWV

31



KUkAo¢ Zwng Ttouv AOYLOMLKOU

Kataypan Kot avaAuon amattroswy.
2 X€OLOOUOC.

YAottoinon.

ErtaAnBevon Kot emtikupwon.

EykataoTtaon, EAeyx0¢, TTOPAPETPOTIOINCN KOL OAOKANPpWON
AOYLOMIKOU OTO TIOPAYWYLKO TOU TIEPLBAAAOV.

JUVTHPNON KOL ETIEKTOON.

32



MovTtéAda avamtuéng AOYLOLIKOU

e AkoAouBOiakn dladikaaia (sequential)
e Movtelo Katappaktn (waterfall)

e ErtavoAnmtikn dtadikaoia (iterative)
e Auvéntikn dadikaaoia (incremental)

e EueAikTn dadkaoia (agile)



MeBodoAoyieg avamtuéng AOyLopLIKOU

Taxela NMpwTtotunoinon (Rapid prototyping).

«Akpaiog lNpoypappatiopog» (Extreme Programming).

Avamtuén Pactopevn oe eheyxoug (Test-driven Development).

2uvexng mapadoon (Continuous Delivery)

Avamtuén / Asttovpyia («DevOps»).

34



AvaAuon amattnoswy

e AvGAuon Kol LOVTEAOTIONON OTIALTOEWVY

* JUVTOEN TIPOSLOYPAPWY KO TIAPAOOTEWVY

35



2XEOLOUOG NOYLOULIKOU

* BOOLKEC OPXEC
* AVTIKELLOVOOTPEPNG OXEOLACHOC CUOTNUATWY

® JUOTOTIKA AOYLOMLKOU

36



Awooa povteAdomtoinong UML

Awaypappoata kAacswv (Class diagrams)
Alaypappata akoAovBuwyv (Sequence diagrams)
Alaypappota dpactnplotnTwy (Activity diagrams)
Alaypappota agevaplwyv xpnong (Use-case diagrams)

KTA.

37



[Mpoétunia Xxediaong (Design Patterns)

e Kataokevaotika tpotutia (Creational patterns)
e Aouka ipotutia (Structural patterns)

e Mpoétumta oupmeplpopag (Behavioral patterns)

38



ApPXLTEKTOVIKN AOYLOULKOU

® APXITEKTOVIKOC OXEOLAOUOG OCUVOETWVY KATAVEUNUEVWV
OUCTNUATWVY
o BoolKEC EVVOLEC

o ‘Epgpaon og epappoyeg SLadIKTUOU

o Apxitektovikn REST (Representation State Transfer)
e Avamtuén RESTful Application Programming Interfaces (APIs)
* QLUATO ATPAAELOG

* QcpaTa ATTOOOCNC

39



2XEOLOOMOG OLETIOPNRG XPNOTN

e EuxpnoTia, SLaOPACTIKOTNTA KOL ATIOKPLOLMOTNTA

e >Uyxpoveg neBodoloyieg avamtuéng SLETa@Ng XPNoTN
o [Mpotuna oxediaong Model-View-Controller kau
Observable

o ‘Epaaon o€ TEXVOAOYLEG Epapuoywy dtadlktuou (HTMLS,
CSS3, Javascript)

o Epappoyeg pag oedidag (Single-page applications)
o Aouyxpoveg texVikeg (AJAX, Promises, Reactive
frameworks)

40



Aloiknon kat Awaxeipion ‘Epyouv Aoylopikou

e Alolknaon €pyou (YEVIKQ)
o Eloaywyn Kol POCLKEG EVVOLEG

o EKTipnon KOOTOLC £pYyOU

e Alolknon opadag avamtuéng AOYLOLKOU
o Yuvnoeilg poAot og i opada avamtuéng AOYLOUIKOU
o AMNAETULOPACELG PETAEL POAWV

o KoAeg OleBVeIC TIPOKTLIKEG

41



Texvikeg kal EpyalAeia Aloiknong,
[MapakoAovOnong kat EAcyxov tng Avamtuéng
A\OYLOHULKOV

e EAeyxog ekdocewv (Version Control)

o ‘Ep@aaon oto cuotnua Git (to Acov oladedopevo Version
Control System)

* AUTOMOTIOMOG OLABLKACLOG «XTIOUATOG» AoyLouikoL (Build
automation)

o ‘Epacn oto cuotnua Gradle (xpnowotmoleital otnv
avamntuén Android e@appoywv)

e AvaAuon TIPOYPAPUATOC (program analysis) Kol cuTOPATOC
EVTOTILOPOG opoApaTwy (bug detection)

42



2EVOPLA EAEYXOU
o Unit testing, Regression testing, Functional testing,
Integration testing, test coverage

2uvexng oAokAnpwaon (Continuous integration)
A&LOTILOTIO AOYLOHUIKOU

H €vvola Tou «TeEXVIKOU/0XESLAOTIKOU Xpeous» (technical
debt).

43



ALOXELPLON CUOTATIKWY TOU AOYLOULKOU

® JUOTATIKA AOYLOMLKOU Kol aAANAeEapTNOELG TOouG (software
components and dependencies)

e ATOONKEC OLUCTATIKWY AOYLOMIKOU (Software artifact
repositories)

o Alxxelplon ekdOCEWV AOYLOULKOV (software releases)

e MeBodol apiBunaong ekdoaoswv (versioning schemes)

44



Av TtpoAdafoupe

e [Awoaoeg 10Ikov okoToL (Domain specific languages)
e Reflection
e Aspect-oriented programming

e Metaprogramming

45



[Mpw &eKlviioouv e

Mua TeAsuTaia OTITLKN

46



Avarmtuén AOYLOMLKOU: TEXVN 1)
ETILOTAMN;

When CACM began publication in 1959, the members of
ACM's Editorial Board made the following remark as they
described the purposes of ACM's periodicals: "If computer
programming is to become an important part of computer
research and development, a transition of programming from
an art to a disciplined science must be effected." Such a goal
has been a continually recurring theme during the ensuing
years; for example, we read in 1970 of the "first steps toward
transforming the art of programming into a science".
Meanwhile we have actually succeeded in making our
discipline a science, and in a remarkably simple way: merely by
deciding to call it "computer science."

Donald Knuth A7



Donald Knuth

e Donald Ervin Knuth is an American computer scientist,

mathematician, and professor emeritus at Stanford University.

He is the author of the multi-volume work The Art of
Computer Programming. He contributed to the development
of the rigorous analysis of the computational complexity of
algorithms and systematized formal mathematical techniques
for it ... Knuth is the creator of the TeX computer typesetting
system, the related METAFONT font definition language and
rendering system, and the Computer Modern family of
typefaces.

e Bpafeio Turing (1974).

48



Donald E. Knuth, "Computer Programming as an Art",
Communications of the ACM, Vol. 7, Issue 12, Dec. 1974, p. 667-

673.

(H optdia Ttou D. Knuth kata tTn Afgn tov Bpapeiov Turing to
1974)

www.cs.bilkent.edu.tr/~canf/knuth1974.pdf

49


http://www.cs.bilkent.edu.tr/~canf/knuth1974.pdf

Kot tn yvwun tov Knuth

To summarize: We have seen that computer programming is
an art, because it applies accumulated knowledge to the
world, because it requires skill and ingenuity, and especially
because it produces objects of beauty. A programmer who
subconsciously views himself as an artist will enjoy what he
does and will do it better. Therefore we can be glad that

people who lecture at computer conferences speak about the
state of the Art.

Donald Knuth

50



AAAN O YVWHUN OXETIKX

To put it in another way: it is my purpose to transmit the
importance of good taste and style in programming, the
specific elements of style presented serve only to illustrate
what benefits can be derived from "style" in general. In this
respect | feel akin to the teacher of composition at a
conservatory: he does not teach his pupils how to compose a
particular symphony, he must help his pupils to find their own
style and must explain to them what is implied by this. (It has
been this analogy that made me talk about "The Art of
Programming".)

E.W. Dijkstra

51



Edsger Dijkstra

e "One of the most influential members of computing science's
founding generation, Dijkstra helped shape the new discipline
from both an engineering and a theoretical perspective. Many
of his papers are the source of new research areas. Several
concepts and problems that are now standard in computer
science were first identified by Dijkstra or bear names coined
by him." (Wikipedia)

e Bpafeio Turing (1972).

52



E.W. Dijkstra, "EWD316: A Short Introduction to the Art of
Programming”, August 1971.

https://www.cs.utexas.edu/users/EWD/transcriptions/EWDO03xx/EW
D316.html

53


https://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD316.html

Kol pia teAsvtaia

What we can say with some confidence is that these are the
glory days of hacking. In most fields the great work is done
early on. The paintings made between 1430 and 1500 are still
unsurpassed. Shakespeare appeared just as professional
theater was being born, and pushed the medium so far that
every playwright since has had to live in his shadow.

Over and over we see the same pattern. A new medium
appears, and people are so excited about it that they explore
most of its possibilities in the first couple generations. Hacking
seems to be in this phase now. Painting was not, in Leonardo's
time, as cool as his work helped make it. How cool hacking
turns out to be will depend on what we can do with this new
medium.

Paul Graham

54



Paul Graham

e "Paul Graham is an English computer scientist, venture
capitalist, and essayist. He is known for his work on Lisp, for
co-founding Viaweb (later renamed "Yahoo! Store"), and for
co-founding the Y Combinator seed capital firm." (Wikipedia).

55



Paul Graham, "Hackers and Painters", O'Reilly Media, 2004, 0-596-
00662-4.

ESw To dldoNuo OpWwVUO essay:
http://www.paulgraham.com/hp.htm|

56


http://www.paulgraham.com/hp.html

Noa Qupdote OtL

The best programmers are up to 28 times better than the

worst programmers, according to "individual differences”
research.

Robert Glass

57



