
Erlang: An Overview

Part 2 – Concurrency and Distribution

Thanks to Richard Carlsson for most of the slides in this part

Processes

Whenever an Erlang program is running, the code
is executed by a process
The process keeps track of the current program
point, the values of variables, the call stack, etc.
Each process has a unique Process Identifier
(“Pid”), that can be used to identify the process
Processes are concurrent (they can run in parallel)

P1
fib(0) -> 1;
fib(1) -> 1;
fib(N) when N > 0 ->
fib(N-1) + fib(N-2).

Implementation
Erlang processes are implemented by the VM’s
runtime system, not by operating system threads
Multitasking is preemptive (the virtual machine
does its own process switching and scheduling)
Processes use very little memory, and switching
between processes is very fast
Erlang VM can handle large numbers of processes
− Some applications use more than 100.000 processes

On a multiprocessor/multicore machine, Erlang
processes can be scheduled to run in parallel on
separate CPUs/cores using multiple schedulers

Concurrent process execution

Different processes may be reading the same
program code at the same time
− They have their own data, program point, and stack –

only the text of the program is being shared (well, almost)

− The programmer does not have to think about other
processes updating the variables

fact(0) -> 1;
fact(N) when N > 0 ->
N * fact(N-1).

P2

P3

P4

Message passing

“!” is the send operator (often called “bang!”)
− The Pid of the receiver is used as the address

Messages are sent asynchronously
− The sender continues immediately

Any value can be sent as a message

Pid2 ! Message

P1 P2
Message

Message queues

Each process has a message queue (mailbox)
− Arriving messages are placed in the queue
− No size limit – messages are kept until extracted

A process receives a message when it extracts it
from the mailbox
− Does not have to take the first message in the queue

P2
Message

Newest Oldest
Mailbox

Receiving a message

receive expressions are similar to case switches
− Patterns are used to match messages in the mailbox
− Messages in the queue are tested in order

The first message that matches will be extracted
A variable-pattern will match the first message in the queue

− Only one message can be extracted each time

receive
Msg -> io:format("~w\n", [Msg])

end

P2
Message

Selective receive

Patterns and guards let a programmer control
the priority with which messages will be handled
− Any other messages will remain in the mailbox

The receive clauses are tried in order
− If no clause matches, the next message is tried

If no message in the mailbox matches, the
process suspends, waiting for a new message

receive
{foo, X, Y} -> ...;
{bar, X} when ... -> ...;
...

end

Receive with timeout

A receive expression can have an after part
− The timeout value is either an integer (milliseconds), or

the atom 'infinity' (wait forever)
− Timeout of 0 (zero) means “just check the mailbox, then

continue”

The process will wait until a matching message
arrives, or the timeout limit is exceeded
Soft real-time: approximate, no strict timing guarantees

receive
{foo, X, Y} -> ...;
{bar, X} when ... -> ...

after 1000 ->
... % handle timeout

end

Send and reply

Pids are often included in messages (self()), so
the receiver can reply to the sender
− If the reply includes the Pid of the second process, it

is easier for the first process to recognize the reply

Pid ! {hello, self()},
receive

{reply, Pid, String} ->
io:put_chars(String)

end

P1 P2

receive
{hello, Sender} ->

Sender ! {reply, self(), "Hi!"}
end

{hello,P1}

{reply,P2,"Hi!"}

Message order

Within a node, the only guaranteed message
order is when both the sender and receiver are
the same for both messages (First-In, First-Out)
− In the left figure, m1 will always arrive before m2 in

the message queue of P2 (if m1 is sent before m2)
− In the right figure, the arrival order can vary

P1

P2

m1

m2P3

P1 P2m1m2

FIFO order
(same pair of sender and receiver)

No guaranteed order
(different senders, same receiver)

Selecting unordered messages

Using selective receive, we can choose which
messages to accept, even if they arrive in a
different order
In this example, P2 will always print “Got m1!”
before “Got m2!”, even if m2 arrives before m1
− m2 will be ignored until m1 has been received

P1

P2

m1

m2P3

receive
m1 -> io:format("Got m1!")

end,
receive

m2 -> io:format("Got m2!")
end

Starting processes
The 'spawn' function creates a new process
There are several versions of 'spawn':
− spawn(fun() -> ... end)

can also do spawn(fun f/0) or spawn(fun m:f/0)

− spawn(Module, Function, [Arg1, ..., ArgN])

Module:Function/N must be an exported function

The new process will run the specified function
The spawn operation always returns immediately
− The return value is the Pid of the new process
− The “parent” always knows the Pid of the “child”
− The child will not know its parent unless it’s told

Process termination
A process terminates when:
− It finishes the function call that it started with
− There is an exception that is not caught

The purpose of 'exit' exceptions is to terminate a process
“exit(normal)” is equivalent to finishing the initial call

All messages sent to a terminated process will be
thrown away, without any warning
− No difference between throwing away a message and

putting it in a mailbox just before process terminates
The same process identifier will not be used
again for a long time

A stateless server process
client() ->

Pid = spawn(fun server/0),

Pid ! {hello, self(), 42},
receive

{reply, Pid, 42} ->
Pid ! stop

end.

P1 P2

server() ->
receive

{hello, Sender, Value} ->
Sender ! {reply, self(), Value},
server(); % loop!

stop ->
ok

end.

{hello,P1,42}

{reply,P2,42}
Client Server

A server process with state
server(State) ->

receive
{get, Sender} ->

Sender ! {reply, self(), State},
server(State);

{set, Sender, Value} ->
Sender ! {reply, self(), ok},
server(Value); % loop with new state!

stop ->
ok

end.

The parameter variables of a server loop can be
used to remember the current state
Note: the recursive calls to server() are tail calls
(last calls) – the loop does not use stack space
A server like this can run forever

A simple server example
-module(simple_server).
-export([start/0]).

-spec start() -> pid().
start() ->

spawn(fun() -> loop(0) end).

-spec loop(integer()) -> no_return().
loop(Count) ->

NC = receive
{report, Pid} -> Pid ! Count;
_AnyOtherMsg -> Count + 1

end,
loop(NC).

Eshell V9.1.3 (abort ...^G)
1> P = simple_server:start().
<0.42.0>
2> P ! foo.
foo
3> [P ! X || X <- lists:seq(1,9)].
[1,2,3,4,5,6,7,8,9]
4> P ! {report, self()},

receive M -> M end.
10

Hot code swapping

When we use “module:function(...)”, Erlang
will always call the latest version of the module
− If we recompile and reload the server module, the

process will jump to the new code after handling the
next message – we can fix bugs without restarting!

-module(server).
-export([start/0, loop/1]).

start() -> spawn(fun() -> loop(0) end).

loop(State) ->
receive

{get, Sender} ->
...,
server:loop(State);

{set, Sender, Value} ->
...,
server:loop(Value);

...

Hiding message details

Using interface functions keeps the clients from
knowing about the format of the messages
− You may need to change the message format later

It is the client who calls the self() function here

get_request(ServerPid) ->
ServerPid ! {get, self()}.

set_request(Value, ServerPid) ->
ServerPid ! {set, self(), Value}.

wait_for_reply(ServerPid) ->
receive

{reply, ServerPid, Value} -> Value
end.

stop_server(ServerPid) ->
ServerPid ! stop.

Registered processes

A process can be registered under a name
− the name can be any atom

Any process can send a message to a registered
process, or look up the Pid
The Pid might change (if the process is restarted
and re-registered), but the name stays the same

Pid = spawn(...),

register(my_server, Pid),

my_server ! {set, self(), 42},

42 = get_request(my_server),

Pid = whereis(my_server)

Links and exit signals

Any two processes can be linked
− Links are always bidirectional (two-way)

When a process dies, an exit signal is sent to all
linked processes, which are also killed
− Normal exit does not kill other processes

P1 P2 P3
fubar

P1 P2
fubar

P3

exit(fubar)

Trapping exit signals

If a process sets its trap_exit flag, all signals
will be caught and turned into normal messages
− process_flag(trap_exit, true)

− {'EXIT', Pid, ErrorTerm}

This way, a process can watch other processes
− 2-way links guarantee that sub-processes are dead

P1 P2 P3

fubarP1 P2fubar P3 P4

P4

{'EXIT',P2,fubar}

trap_exit = true

Robust systems through layers

Each layer supervises the next layer and restarts
the processes if they crash
The top layers use well-tested, very reliable
libraries (OTP) that practically never crash
The bottom layers may be complicated and less
reliable programs that can crash or hang

Distribution

Running “erl” with the flag “-name xxx”
− starts the Erlang network distribution system
− makes the virtual machine emulator a “node”

the node name is the atom 'xxx@host.domain'

Erlang nodes can communicate over the network
− but first they must find each other
− simple security based on secret cookies

[foo.bar.se] $ erl -name fred
Erlang/OTP 20 [erts-9.1.3] [...] ...

Eshell V9.1.3 (abort with ^G)
(fred@foo.bar.se)1> node().
'fred@foo.bar.se'
(fred@foo.bar.se)2>

Connecting nodes

Nodes are connected the first time they try to
communicate – after that, they stay in touch
− A node can also supervise another node

The function “net_adm:ping(Node)” is the easiest
way to set up a connection between nodes
− returns either “pong” or “pang” ☺

We can also send a message to a registered
process using “{Name,Node} ! Message”

(fred@foo.bar.se)2> net_adm:ping('barney@foo.bar.se').
pong
(fred@foo.bar.se)3> net_adm:ping('wilma@foo.bar.se').
pang
(fred@foo.bar.se)4>

Distribution is transparent
One can send a Pid from one node to another
− Pids are unique, even over different nodes

We can send a message to any process through
its Pid – even if the process is on another node
− There is no difference (except that it takes more time

to send messages over networks)
− We don't have to know where processes are
− We can make programs work on multiple computers

with no changes at all in the code (no shared data)
We can run several Erlang nodes (with different
names) on the same computer – good for testing

Running remote processes

We can use variants of the spawn function to
start new processes directly on another node
The module 'global' contains functions for
− registering and using named processes over the

whole network of connected nodes
not same namespace as the local “register(...)”
must use “global:send(...)”, not “!”

− setting global locks

P = spawn('barney@foo.bar.se', fun() -> ... end),

global:register_name(my_global_server, P),

global:send(my_global_server, Message)

Ports – talking to the outside

Talks to an external (or linked-in) C program
A port is connected to the process that opened it
The port sends data to the process in messages
− binary object
− packet (list of bytes)
− one line at a time (list of bytes/characters)

A process can send data to the port

PortId = open_port({spawn, "command"}, [binary]),

PortId ! {self(), {command, Data}}

PortId ! {self(), close}

