
Εθνικό Μετσόβιο Πολυτεχνείο
Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών
Τομέας Τεχνολογίας Πληροφορικής & Υπολογιστών
https://courses.softlab.ntua.gr/pl2/

Γλώσσες Προγραμματισμού ΙΙ

Αν δεν αναφέρεται διαφορετικά, οι ασκήσεις πρέπει να παραδίδονται στους διδάσκοντες σε ηλεκτρονική μορφή
μέσω του συνεργατικού συστήματος ηλεκτρονικής μάθησης moodle.softlab.ntua.gr. Η προθεσμία παράδοσης
θα τηρείται αυστηρά. Έχετε δικαίωμα να καθυστερήσετε το πολύ μία άσκηση.

Άσκηση 5 Παραλληλισμός σε Erlang ή Haskell
Προθεσμία παράδοσης: 10/1/2021

Ο σκοπός της συγκεκριμένης άσκησης είναι να σας εξοικειώσει με την παράλληλη/ταυτόχρονη εκτέλεση
προγραμμάτων σε Erlang ή σε Haskell. Επιλέξτε μία από τις δύο γλώσσες και, στην περίπτωση της
Haskell, επιλέξτε μία από τις δύο δυνατές υλοποιήσεις (parallel ή concurrent). Ακολουθεί η εκφώνηση
στα αγγλικά.

You want to find the reverse image for a number of values computed by an unknown integer hashing
function, which is implemented in Erlang (or Haskell).

For that purpose you will be given the function and a list of 216 unique hash values. You know that
each hash has been generated by an integer between 1 and 227 − 1.

Task in Erlang

Try to find the reverse image for as many input values as possible. Read the next section to see how your
Erlang program should operate. (The description of the task in parallel or concurrent Haskell follows.)

Grading

Your solution should be scalable. Your submission will be benchmarked within a grading framework
which will operate in the following way:

1. It will spawn your program in a new process and start a countdown.

2. When the countdown expires it will send a finish_up message to your program.

3. Your programmust send a {reply,List}message back to the graderwithin 1 sec. or be disqualified.

4. Your program may also send the {reply,List} message at any earlier point.

A sample grading framework is included in reverse_grader.beam (link to download). It exports the
following functions:

• sample_fun(): Returns a sample hashing function, which expects a value between 1 and 227 − 1
and returns a value in the same range.

• sample_inputs(Fun): Given a hashing Fun, returns 216 hash values generated by random input
values from the domain [1..227 − 1].

https://courses.softlab.ntua.gr/pl2/2020b/exercises/reverse_grader.beam


• estimate_timeout(): Returns an estimation (in milliseconds) of the timeout that would be used,
if you were running with 1 scheduler on your current platform trying to reverse values calculated
with the function returned by sample_fun().

• base_score(): Returns an estimation of the number of inputs from sample_fun/0 that should be
solved with 1 scheduler on your current platform to get full points.

• sample_grade(): Invokes the grader which will eventually spawn a new process and call your
main function: reverse_hash:solve(Fun, Inputs, P, Schedulers):

– Fun is the hash function that you are trying to reverse (e.g. the one returned by sample_fun/0).

– Inputs is a list of hash values that have been calculated with Fun.

– P is the Erlang PID of the grader. After it spawns your process it will wait for a {reply, List}
message, where List should be a list of 2­tuples {Hash, ReverseImage}, with Hash being
one of the values in Inputs such that Hash = Fun(ReverseImage). At some point the grader
will send to the spawned process a finish_up message and give you 1 second to reply with
your list. If you fail to do so, the grader will disqualify your program.

– Schedulers is the number of usable schedulers that you have available. It can be changed
from the default (1 scheduler per core) by passing the +S flag when starting the VM.

While grading your program will be run with 1, 2, 4 and 8 schedulers on an 8 core machine. To
get 100% in this exercise, you have to be able to solve with 1 scheduler at least as many inputs for the
sample_fun/0 as the base_score/0, which uses a simple solver. You should then be able to solve in the
same time twice as many inputs with 2 schedulers, four times as many inputs with 4 and eight times as
many inputs with 8. You can test your solution with sample_grade() before submitting.

Task in Haskell

As there is clear distinction between concurrent and parallel programming in Haskell, you are free to
choose which way you want to solve this problem. You only need to choose one way, either concurrent
programming using threads (forkIO) or parallel programming using parallel map (parMap). The lectures
mainly covered parallel programming in Haskell, but you can find all necessary information on concurrent
programming in Haskell in the later part of Marlow’s tutorial, which is linked on the course web page.

Depending on which approach you decide to take, do either (a) or (b) below:

(a) Implement the following function in reverse_hash_solver_par.hs:

solver_par :: (Int -> Int) -> [Int] -> MVar () -> MVar [(Int, Int)] ->
Int -> IO ()

solver_par hash inputs signal box schedulers = ...

where its arguments are:

• hash: the hashing function used

• inputs: 216 hash values in a list

• signal: an MVar set by the main thread to notify the solver to send it all solved cases soon

• box: an MVar to hold the solved cases, i.e., a list of pairs (hash, rev_image)

• schedulers: the number of schedulers available



Since the actual data is communicated using MVars, the return type is unit captured in an IOmonad.

The main thread would fork another thread for solver_par to run, set the signal in 2 seconds,
and wait for solved cases in box for at most 1 second. Then, the speed, measured in solved cases per
time, is calculated, which is used to derive the final score. More about this in the Grading section.

(b) Implement the following function in reverse_hash_solver_conc.hs:

solver_conc :: (Int -> Int) -> [Int] -> Int -> [(Int, Int)]
solver_conc hash inputs schedulers = ...

where its arguments are:

• hash: the hashing function used
• inputs: 216 hash values in a list
• schedulers: the number of schedulers available

The return value is the list of solved cases, with each element being a pair (hash, rev_image).

Themain threadwould run solver_concwith appropriate arguments, andmeasure the total amount
of time it takes. Then, speed, measured in solved cases per time, is calculated, which is used to
derive the final score. More about this in the Grading section.

If you need to import additional modules, put those in the reverse_hash_imports.hs file; otherwise
leave this file empty.

Grading

The grading scheme for this task is provided in reverse_hash.hs (link to download). Depending on the
approach that you take, you need to modify it to include the right file and call the corresponding score
calculation function, get_score_par or get_score_conc.

$ ghc -cpp -O2 reverse_hash.hs -threaded -rtsopts && ./reverse_hash +RTS -N8
For 1 scheduler(s) score: 1.00
For 2 scheduler(s) score: 0.91
For 4 scheduler(s) score: 0.84
For 8 scheduler(s) score: 0.78

While grading, your program will be run with 1, 2, 4 and 8 schedulers on a machine with at least 8
cores. For each case, your score will depend on the ratio between your solution’s speed (solved pairs per
time) and the base speed (result from base_speed).

https://courses.softlab.ntua.gr/pl2/2020b/exercises/reverse_hash.hs

