Static Program Analysis
Part 1 —the TIP language

http://cs.au.dk/~amoeller/spa/

Anders Mgller & Michael I. Schwartzbach
Computer Science, Aarhus University

Questions about programs

Does the program terminate on all inputs?

How large can the heap become during execution?
Can sensitive information leak to non-trusted users?
Can non-trusted users affect sensitive information?
Are buffer-overruns possible?
Data races?

SQL injections?

XSS?

Program points

foo(p,x) {
var f,q;

it (Fp==0) { f=1; }
else { any point in the program

q = alloc 10;/=anyvalue of the PC
*q = (*p)-1;

f=Cp)*(x(q,x));
}

return f;

}

Invariants:

A property holds at a program point if it holds in any
such state for any execution with any input

Questions about program points

Will t
Cant
Whic

ne value of X be read in the future?
ne pointer p be nul1?

h variables can p point to?

Is the variable X initialized before it is read?

What is a lower and upper bound on the value of the
integer variable X?

At which program points could X be assigned its

curre
Do p

nt value?
and g point to disjoint structures in the heap?

Can this assert statement fail?

Why are the answers interesting?

Increase efficiency
— resource usage
— compiler optimizations

Ensure correctness
— verify behavior
— catch bugs early

Support program understanding
Enable refactorings

Testing?

“Program testing can be used to show
the presence of bugs, but never to show
their absence.”

[Dijkstra, 1972]

Nevertheless, testing often takes 50% of the development cost

Programs that reason about programs

a program analyzer A

a program P

Requirements to the perfect program analyzer

R
- J0) SOUNDNESS (don’t miss any errors)

- J0» COMPLETENESS (don’t raise false alarms)

- J2D TERMINATION (always give an answer)

—

Rice’s theorem, 1953

CLASSES OF RECURSIVELY ENUMERABLE SETS
AND THEIR DECISION PROBLEMS(})

BY
H. G. RICE

1. Introduction. In this paper we consider classes whose elements are re-
cursively enumerable sets of non-negative integers. No discussion of recur-
sively enumerable sets can avoid the use of such classes, so that it seems de-
sirable to know some of their properties. We give our attention here to the
properties of complete recursive enumerability and complete recursiveness
(which may be intuitively interpreted as decidability). Perhaps our most
interesting result (and the one which gives this paper its name) is the fact
that no nontrivial class is completely recursive.

We assume familiarity with a paper of Kleene [5](%), and with ideas
which are well summarized in the first sections of a paper of Post [7].

I. FUNDAMENTAL DEFINITIONS

2. Partial recursive functions. We shall characterize recursively enumer-

CoroLLARY B. There are no nontrivial c.r. classes by the strong definition.

Rice’s theorem

Any non-trivial property of the behavior of programs
in a Turing-complete language is undecidable!

10

Reduction to the halting problem

e Can we decide if a variable has a constant value?

x =17; 1f (0M(j)) x = 18;

 Here, X is constant if and only if the j'th Turing
machine does not halt on empty input

11

Approximation

Approximate answers may be decidable!

The approximation must be conservative:
— i.e. only err on “the safe side”

— which direction depends on the client application

We'll focus on decision problems
More subtle approximations if not only “yes”/“no”

— e.g. memory usage, pointer targets

14

False positives and false negatives

15

Example approximations

* Decide if a given function is ever called at runtime:

— if “no”, remove the function from the code
— if “yes”, don’t do anything
— the “no” answer must always be correct if given

e Decide if a cast (A)X will always succeed:
— if “yes”, don’t generate a runtime check
— if “no”, generate code for the cast
— the “yes” answer must always be correct if given

16

Beyond “yes”/“no” problems

* How much memory / time may be used in any
execution?

 Which variables may be the targets of a pointer
variable p?

17

The engineering challenge

A correct but trivial approximation algorithm may just
give the useless answer every time

The engineering challenge is to give the useful answer
often enough to fuel the client application

... and to do so within reasonable time and space

This is the hard (and fun) part of static analysis!

18

Bug finding

int main() {
char *p,*q;
P = NULL;
printf("%s",p);
g = (char *)malloc(100);
P = d;
free(q);
*p = 'X';
free(p);
p = (char *)malloc(100);
p = (char *)malloc(100);
q = p;
strcat(p,q);

https://en.wikipedia.org/wiki/Lint (software)

gcc -wall foo.c

lint foo.c
No errors!

19

Y

Does 3[|||w;||-g deye E—

POSTED ON SEP 6, 2017 TO ANDROID,

ELOPER TOOLS, 1O

Finding inter-pipm
Infer static ana

u SAM BELACKSHEAR @ DIN

I LILY HAY NEWMAN SECURITY 08.15.19 DS5:03 PM
The capabilities of static analyzers, \ ql I '\RE ‘ ? ' ‘ nl’l | |
our work on the Infer static an: :\;-,a:.-x::r|“, L Al ' ‘ ‘ L

source analysis tools like F

et 0 BUGS IN ITS 100 MILLION
Wk bk el o LINES OF CODE

the tools mentioned above, which pg
Analyzer — only intra-file analysis (p

unit, a file-with-includes). n

Inter-procedural bugs are significant
Facebook developers have fixed tho E
can have a large impact; we include
Facebook. As we have found, inter-g
codebases that consist of millions of 1181818181618

(5] (=] -

How Facebook Catches Bugs in lts 100 Million

BUSIMESS CULTURE GEAR IDEAS

A constraint-based approach

Conceptually separates the analysis specification
from algorithmic aspects and implementation details

public
public

class Matrix {
static void main(String[] args) {

int arr[][l=new int[3][3];
System.out.println("Enter nine elements");
Scanner sc=new Scanner (System.in);

for(int i=0;i<arr.length;i++)

{

for(int j=0;j<arr.length;j++)
{ \
arr[i] [j]l=sc.nextInt();
}
}
int sum=0;
for (int i = 0; i < arr.length; i++) {

sum = sum + arr[i][j];
1}
System.out.println(sum) ;

for (int j = 0; j < arr.length; j++) {
constraint

if (1 = j)
solver

program to analyze [p] = &int

[q] = &int
N [alloc] = &int
N [x] = ¢
‘ [foo] = ¢
[&n] = &int
[main] = ()->int

solution

mathematical
constraints

21

Challenging features in
modern programming language

Higher-order functions

Mutable records or objects, arrays
nteger or floating-point computations
Dynamic dispatching

nheritance
Exceptions
Reflection

22

The TIP language

e Tiny Imperative Programming language

 Example language used in this course:
— minimal C-style syntax
— cut down as much as possible
— enough features to make static analysis challenging and fun

* Scala implementation available

23

Expressions

Exp — Int

Id

Exp+Exp | Exp—Exp | Exp * Exp | Exp / Exp
Exp > Exp | Exp == Exp

CExp)

1nput

| € Int represents an integer literal

X € Id represents an identifier (x, y, z,...)

1nput expression reads an integer from the input stream
 comparison operators yield O (false) or 1 (true)

24

Statements

Stm — Id = Exp;
output Exp,
Stm Stm

if (Exp) {Stm} [else {Stm}]’
while (Exp) {Stm}

* |n conditions, O is false, all other values are true

* The output statement writes an integer value to the
output stream

25

Functions

Functions take any number of arguments and
return a single value:

Fun— Id CIid, ..., Id) {
[varid, ..., 1d;]’
Stm
return Exp;

¥

The optional var block declares a collection of
uninitialized variables

Function calls are an extra kind of expressions:

Exp — ...| Id CExp, ..., Exp)

26

Pointers

Exp — ...

alloc Exp
& Id

* Exp

null

Stm — ... | *Exp = Exp;

(No pointer arithmetic)

27

Records

Exp — ...
| {Id:Exp, ..., Id:Exp }
| Exp.Ild

Stm — ...
| Id.Ild=Exp;
| (*Exp) .ld =Exp;

Records are passed by value (like structs in C)
For simplicity, values of record fields cannot themselves be records

28

Functions as values

Functions are first-class values

The name of a function is like a variable that refers to
that function

Generalized function calls:

Exp — ... | Exp(Exp, ..., Exp)

Function values suffice to illustrate the main challenges
with methods (in object-oriented languages)
and higher-order functions (in functional languages)

29

Programs

A program is a collection of functions
 The function named main initiates execution

— its arguments are taken from the input stream
— its result is placed on the output stream

 We assume that all declared identifiers are unique

Prog — Fun ... Fun

30

An iterative factorial function

1te(n) {
var T;
7 = e
while (n>0) {
T = TE
n = n-1;
}

return f;

31

A recursive factorial function

rec(n) {

var T;

1t (n==0) {
1=l ¢

} else {
f=n*rec(n-1);

¥

return T;

32

An unnecessarily complicated function

main() {
foo(p,x) { var n:
var t,q; n = input;
it (p==0) { return foo(&n,foo):
1=l 1
} else { r
g = alloc 0;
*q = (Fp)-1;
f=C*p) *(x(q, %)) ;
}
return T;

¥

33

Static Program Analysis
Part 2 — type analysis and unification

http://cs.au.dk/~amoeller/spa/

Anders Mgller & Michael I. Schwartzbach
Computer Science, Aarhus University

Type errors

* Reasonable restrictions on operations:
— arithmetic operators apply only to integers
— comparisons apply only to like values
— only integers can be input and output
— conditions must be integers
— only functions can be called
— the * operator only applies to pointers
— field lookup can only be performed on records
— the fields being accessed are guaranteed to be present

 Violations result in runtime errors

* Note: no type annotations in TIP

Type checking

Can type errors occur during runtime?
This is interesting, hence instantly undecidable

Instead, we use conservative approximation

— a program is typable if it satisfies some type constraints
— these are systematically derived from the syntax tree

— if typable, then no runtime errors occur

— but some programs will be unfairly rejected (slack)

What we shall see next is the essence of the
Damas—Hindley—Milner type inference technique,
which forms the basis of the type systems of e.g. ML, OCaml, and Haskell

Typability

no type errors typable

~—

"~ slack

Fighting slack

* Make the type checker a bit more clever:

* An eternal struggle

Fighting slack

* Make the type checker a bit more clever:

* An eternal struggle
* And a great source of publications

Be careful out there

* The type checker may be unsound:

e Example: covariant arrays in Java

— a deliberate pragmatic choice

Generating and solving constraints

/
/ AST \
/’/ \‘\
/// \\\
/ \

A

/ \

/
/

constraints

solver
(unification)

[p] = tint

[q] = tint
[alloc 0] = Tint
[x]=¢

[foo] = ¢

[&n] = Tint
[main] = ()—int

solution

Types

* Types describe the possible values:

Type = 1nt
T Type

(Type, ..., Type) — Type
{1d: Type, ..., Id: Type }

 These describe integers, pointers, functions,
and records

* Types are terms generated by this grammar
— example: (int,Tint) - 11int

Type constraints

We generate type constraints from an AST:
— all constraints are equalities

— they can be solved using a unification algorithm

Type variables:

— for each identifier declaration X we have the variable [X]
— for each non-identifier expression E we have the variable [[£]

Recall that all identifiers are unique
The expression E denotes an AST node, not syntax

(Possible extensions: polymorphism, subtyping, ..

)

10

Generating constraints (1/3)

[

E,opE,:

E,==E,:

Tnput:

X=E:

OutputeE:

1t (E) {S}:

if (E) {s,} else {S,}:
while (E) {S}:

[I1=1nt
[E,] =[E,] =[E,opE,] =1int
[E.] =[E] AE;==E,] =1nt

[1nput]=1nt
[X] = [£]

[€] = int

[€] = int

[€] = int

[E] =1nt

11

Generating constraints (2/3)

X(Xyy.., X)1 ..returnk; }:

X1 = C0X:d 5 -y TX0D — [E]

ECE,, ..., E.):
[E] = ([E,D, ... [E.]) — [ECE;, .y E,D]
allocE: [alToc E] = TE]
&X: [&X] = T[[X]
nul l: Null1]=Ta (each a is a fresh type variable)
*E: [E] = T[*E]
“E = Ey [E,] = T[E,]
For each parameter X of the main function: [X]=1nt

For the return expression E of the main function: [E] = 1nt

12

Exercise

main() {
var X, Yy, Z;
X = 1nput;
y = alloc 8;
Ty = X;
Z = 7Y;
return Xx;

h

e Generate and solve the constraints
 Thentrywithy = alloc 8 replacedbyy = 42

* Also try with the Scala implementation (when it’s completed) .

Generating constraints (3/3)

X, E;y ...y X 1E }:

{Xl:E1!---1X. _ 1:[[E1]]!---!Xn:[[En]]}
E.X: | Ellast=.. ylE . X], ... }

This is the idea, but not directly expressible in our language of types

14

Generating constraints (3/3)

Let {f,, f,, ---, f,,} be the set of field names that appear in
the program

Extend Type — ... |o where ¢ represents absent fields
X, By oy X tE ¥ [AX,2E;y ooy X E F] ={fi:Ysy ooos iV,

where y;= —

E.X:

where y;= —

0

—

[E;] if f;= X; for some j

otherwise

[EN={f1:V1s o5 fi¥m } AE.X]#0

| [E.X]iff=X

=

Q.

otherwise

(Field write statements? Exercise...)

15

General terms

Constructor symbols:
e Q-ary:a,b,c — | beant
elary:d, e | &

e 2-ary:f, g, h

e 3-ary: i, j, k

Terms with variables:
e f(X,b)

e h(X,g(Y,2)) o

B EX (Tl,rz)_)rg

[~

Terms:
®d
* d(a)
* h(a,g(d(a),b))

X, Y, and Z here are type variables,

like [(*p) -1] or [p],
not program variables

16

The unification problem

* An equality between two terms with variables:

k(X,b,Y) = k(f(Y,2),Z,d(2))

e A solution (a unifier) is an assignment from variables
to terms that makes both sides equal:

X =f(d(b),b)
Y = d(b) Implicit constraint for term equality:
7-b c(ty,...,t) =clty,...t))) = t,=t/ forall i

17

Unification errors
* Constructor error:
d(X) = e(X)
* Arity error:

a = a(X)

18

The linear unification algorithm

Paterson and Wegman (1978)
In time O(n):

— finds a most general unifier
— or decides that none exists

Can be used as a back-end for type checking

... but only for finite terms

19

Recursive data structures

The program
var p;

p = alloc null;
P = p;

creates these constraints

[null] =Tt
[alToc null1]=1[null]
[p] =[alloc null]

[p] = T[p]

which have this “recursive solution” for p:
[p] =t where t = Tt

Regular terms

* Infinite but (eventually) repeating:

— e(e(e(e(e(e(...)))))
— d(a,d(a,d(a, ...)))

— F(R(F(F(...),F(...)), F(FC...),£(...))), FORCR(...), f(...)), F(f(...),f(...)))

* Only finitely many different subtrees

A non-regular term:

— f(a,f(d(a),f(d(d(a)),f(d(d(d(a))),...))))

21

Regular unification

Huet (1976)

The unification problem for regular terms

can be solved in O(n-A(n))
using a union-find algorithm

A(n) is the inverse Ackermann function:

— smallest k such that n < Ack(k,k)
— this is never bigger than 5 for any real value of n

See the TIP implementation...

22

Implementation strategy

Representation of the different kinds of types
(including type variables)

Map from AST nodes to type variables
Union-Find
Traverse AST, generate constraints, unify on the fly

— report type error if unification fails

— when unifying a type variable with e.g. a function type,
it is useful to pick the function type as representative

— for outputting solution, assign names to type variables
(that are roots), and be careful about recursive types

25

The complicated function

main() {
foo(p,x) { Rl
var f,q: n = 1nput;
if (*p==0) { return foo(&n,foo);
=t }
} else { [
q = alloc O;
*q = (¥p)-1;
F=C*p)*(x(q,x));
}
return f;

¥

26

Generated constraints

[foo] = ([p], [X])—[fI
[*p]=1nt
[1] =1nt
[p] = T[*p]
[alToc 0] =1[0]
[q] = T[*q]
[f]=[1C*p)*(x(q,x))]
[Xx(g,x)]=1nt
[1nput] =1nt

[n] = [1nput]

[f]

[q]

[C*

[*p==0] = 1nt
| = [1]
[0]
[a]
| = T[(*p) -1]
[*p] =1nt

=1nt
=[alloc O]

‘P)*(x(q,x))]=1nt

[x] = C[all, XD —-[x(q,x)]
[main] = ()—[foo(&n,foo)]
[&n] = T[n]

[*p] = [0]

[foo(&n,foo)] =1nt

[foo] =([&n], [foo]) —»[foo(&n, foo)]
[(*p)-1] =1nt

27

Solutions

[p] = Tint

[q] = Tint
[alToc 0]=Tint
[X] =¢

[foo] = o

[&n] =Tint
[main]=()—-1nt

/

Here, ¢ is the regular type that is the unfolding of
o= (Tint,d)—>int

which can also be written = ut.(Tint, t)—>int

All other variables are assigned 1nt

28

Infinitely many solutions

The function

poly(x) {
return =*Xx;

¥

has type (Ta) —a for any type o

(which is not expressible in our current type language)

29

Recursive and polymorphic types

Extra notation for recursive and polymorphic types:

Type — ...
| W TypeVar. Type
| TypeVar
TypeVar >t | u| ...

(not very useful unless we also add
polymorphic expansion at calls,

but that makes complexity exponential,
or even undecidable...)

A type T € Type is a (finite) term generated by

this grammar

i a. 1 is the (potentially recursive) type Tt where
occurrences of a represent t itself

a € TypeVar is a type variable (implicitly universally
quantified if not bound by an enclosing p)

Slack — let-polymorphism

Fx) {
return *x;
}
main() {
return f(alloc 1) + *(f(alloc(alloc 2));
}

This never has a type error at runtime — but it is not typable
Tint=[x]=11int

But we could analyze f beforemain: [f]= (Tt)—t

and then “instantiate” that type at each call to finmain

31

Slack — let-polymorphism

polyrec(g,x) {
var r;

if (x==0) {

r=g;
} else {

r=polyrec(2,0);
}

return r+1;

}

main() {
return polyrec(null,l1)

}

This never has a type error at runtime — but it is not typable
And let-polymorphism doesn’t work here because bar is recursive

32

Slack — flow-insensitivity

fO {
var X;
X = alloc 17;
X = 42;
return x + 87;
}

This never has a type error at runtime — but it is not typable
The type analysis is flow insensitive (it ignores the order of statements)

33

Other programming errors

* Not all errors are type errors:

baz() {
— dereference of nul1 pointers var x:
— reading of uninitialized variables return &x;

— division by zero

— escaping stack cells main() {
\ var p:

(why not?) p=baz();
*p=1;
return *p;

}

e Other kinds of static analysis may catch these

34

