K Dynamic Memory Management' \

The runtime system linked in with the generated code should contain
routines for allocation and deallocation of dynamic memory.

Pascal, C, C++, Modula-2 — Allocation and deallocation are explicit;
i.e., the programmer is responsible to keep track of all allocated memory

and when it is safe to free it.

Eiffel, Java — Allocation is explicit, but deallocation is implicit. Dynamic
memory which is no longer used, is recycled by the garbage collector.

Ada — Implicit or explicit deallocation (implementation defined).
Modula-3 - Implicit and explicit deallocation (programmer’s choice).

Lisp, Scheme, ML, Erlang, Haskell, Prolog, Mercury - Both

\ allocation and deallocation of memory is implicit.

/ Memory Management I

¢ In a language such as C or Pascal, there are three ways to allocate

memory:
1. Static allocation. Space for global variables is allocated at compile
time.

2. Stack allocation. Used for activation records (procedure call chains
and local variables).

3. Heap allocation. Used for data structures which are dynamically
allocated either explicitly by the programmer (new, malloc, etc.) or
implicitly (e.g., cons).

¢ The compiler and runtime system divide the available address space into

three sections (one for each allocation type).

_/
4 ™

Memory Management (Cont.)I

¢ The static section is generated by the compiler and cannot be extended

at run time.

¢ The stack grows and shrinks during execution, according to the depth of
the call chain. Deep recursion often leads to stack overflow. A large
number of parameters or locals can also result in running out of stack

space.

¢ The heap grows by a suitable amount of memory when the program
makes a request for more dynamic memory (e.g., by calling malloc).

)

_/
4 N

Memory Organization I

Program Code

Constant Static Data
(strings, reals, ...)

Uninitialized Static Data
(Global variables)

Stack
¥

il

Heap

s

Explicit Deallocation I

Pascal’s new/dispose, Modula-2’s ALLOCATE/DEALLOCATE,
C’s malloc/free, C++’s new/delete,

Ada’s new/unchecked_deallocation (some implementations).

Problems:

¢ Dangling references
NEW(p); q := p; DISPOSE(p); use(q);
4 Memory leaks

¢ Heap fragmentation

~

/ Implicit Deallocation I

Lisp, Prolog — Equal-sized cells; not many changes to old cells

Eiffel, Modula-3, Java — Different-sized objects; frequent changes to old

¢ When to deallocate data?

Disruptive — Stop execution of the program to perform GC whenever
we run out of space.

Real-Time/Incremental — Perform a partial GC for each pointer
assigment or new.

Concurrent — Run the GC as a separate thread/process.

¢ Fragmentation — Compact the heap as part of GC, or only when the GC
fails to return a large enough block.

¢ Algorithms: Reference counting, mark-and-sweep, copying, generational.

_ /
4)

Garbage Collection I

¢ Heap-allocated records that are not reachable by any chain of pointers
from program variables are garbage.

¢ Memory occupied by garbage should be reclaimed for use in allocating

new records. This process is called garbage collection.

¢ GC is performed by the runtime system, not by the compiler; however,

¢ GC frees programmers from the tedious and error-prone task of memory
management, thus making a programming language with built-in GC
higher-level.

¢ GC is a long-studied topic (many algorithms already developed).

)

N
-

I et Program Heap
type list = {link: list, Variables
key: int} [12]
type tree = {key: int, Bl
left: tree, g L]
right: tree} r

function maketree() = ---
function showree(t: tree) = ---
in

let var x := list{link=nil, key=7}
var y := list{link=x, key=9} 137 |
in x.link :=vy ol
end; L
let var p := nmaketree() 129
var r := p.right Il
var q := r.key L=
i n garbage-collect here

showt ree(r)
end
end

[]-8]

FIGURE 13.1. A heap to be garbage collected.
From Modern Compiler Implementation in ML,

Cambridge University Press, ©1998 Andrew W. Appel

\ /

4 N

Finding the Object Graph'

Program variables and dynamically allocated objects form a directed graph.
The roots of this graph can be in:

1. global variables;
2. registers;

3. local variables & formal parameters on the stack.

Objects are reachable if there is a path of edges that leads to them starting
from some root. Hence, the compiler must communicate to the garbage
collector which registers/variables contain roots.

N

s

Mark-and-Sweep Garbage Collection'

We can mark all reachable nodes using e.g. depth-first search.

function DFS()
if x is apointerinto theheap
if recordx is not marked
markx
for eachfield f; of recordx
DFS. f;)

ALGORITHM13.2. Depth-first search.
From Modern Compiler Implementation in ML,
Cambridge University Press, ©1998 Andrew W. Appel

_/
4 ™

Mark-and-Sweep Garbage Collection'

¢ Any node not marked is garbage and is reclaimed by a sweep phase
which scans the heap from beginning to end collecting all garbage cell in

a freelist (a linked list). The sweep phase also unmarks all records.

¢ After garbage collection, the program resumes execution. New records
are allocated from the freelist. When this is exhausted, it is a good time
to invoke another garbage collection.

_ /

N

Mark-and-Sweep Garbage Collection (code)

Mark phase: Sweep phase;
for eachrootv p « firstaddressn heap
DFS(v) whilep < lastaddressn heap

if recordp is marled
unmarkp

elselet f; bethefirstfieldin p
p.fy < freelist
freelist < p

p « p+(sizeof recordp)

ALGORITHM13.3. Mark-and-sweep garbage collection.
From Modern Compiler Implementation in ML,
Cambridge University Press, ©1998 Andrew W. Appel

N

‘Mark-and-Sweep Garbage Collection (example)‘

jalitelue]
altele]

20
freelist =]
L]

(a) Marked (b) Swept

FIGURE 13.4. Mark-and-sweep collection.
From Modern Compiler Implementation in ML,
Cambridge University Press, ©1998 Andrew W. Appel

4 N

Cost of Mark-and-Sweep Garbage Collection

Marking phase: takes time proportional to the amount of reachable data
R.

Sweep phase: takes time proportional to the size of the heap /.

¢ The “good” that GC does is to recover // — /2 words of usable memory.
Thus, the amortized cost of GC (in instructions per allocated word) is:

c1R+ coH
H—-R

¢ If R~ H, the cost is very large. If R < H, the cost is = ¢».

¢ Usually, if R/H > 50%, the collector increases H. Then the cost per
allocated word will be approximately ¢; + 2c¢,.

_
-

Tuning of Mark-and-Sweep Garbage Collection

allows the marking phase to require a
considerably smaller auxiliary area (// words rather than // activation

records).

allows use of the fields of the already processed heap

records as auxiliary area (to store elements of the stack).

allows variable-size allocation from the
reclaimed space without searching

(freelist|i] stores all reclaimed records of size 7).

_/
~

_ _/
4)

Depth-first search using an explicit stack

function DFS()
if x is apointerandrecordx is notmarked
t <1
stackt] < x
whilet > 0
X < stackt]; t<«t—-1
for eachfield f; of recordx
if X. f; isapointerandrecordx. f; is notmarked
markXx. f
t < t+1; stacKt] < x.f;

ALGORITHM 13.5. Depth-first search using an explicit stack.
From Modern Compiler Implementation in ML,
Cambridge University Press, ©1998 Andrew W. Appel

_ /

Depth-first search using pointer reversal

function DFS)
if X is apointerandrecordx is notmarked
t < nil
markx; dongx] <— O
while true
i < dondgx]
ifi < # of fieldsin recordx

Yy <— X. fi

if y is apointerandrecordy is notmarked
X.fi <—t; t < X; X <Yy
markx; dongx] <— O

else
dongx] <—— i + 1

else
Y <— X; X <— t

if x = nil then return
i <— dondx]

t < x.fj; X.fj <— vy
dongx] <— i + 1

ALGORITHM 13.6. Depth-first search using pointer reversal.
From Modern Compiler Implementation in ML,

Cambridge University Press, ©1998 Andrew W. Appel

Reference Counting I

Identifying unreachable records can be done directly by the compiler

~

maintaining a reference count field for records: a field that keeps track of

how many pointers point to each record.

Although reference counting seems simple and attractive, it also has

severe problems:

1. Cycles of unreachable data cannot be detected and reclaimed.

2. Keeping track of reference counts is very expensive.

Because of these disadvantages, reference counting is rarely used for

automatic storage management in programming language environments.

N\

N

_/
~

Copying Garbage Collection'

¢ The allocated space is split in two semi-spaces and the garbage collector
copies the reachable data from the old part of the heap (from-space) to
the new part (to-space). Roots are made to point to the to-space and

the roles of the two semi-spaces are swapped.

¢ After a copying GC, the to-space is compact: garbage is not interspersed
with the reachable data.

)

N\

Copying Garbage Collection‘

from- to- from- to-
space roots space space roots space
= T=h
]
next
5/—limit

< hext

< limit

(a) Before collection

(b) After collection

_/
~

FIGURE 13.7.

Copying collection.
From Modern Compiler Implementation in ML,

Cambridge University Press, ©1998 Andrew W. Appel

\

s

Forwarding Pointers

Given a pointer p that points to from-space, make p point to to-space:

1. If p points to a from-space record that has already been copied, then
is a special forwarding pointer that indicates where the copy is (so
that other references to the record can be updated).

2. If p points to a from-space record that has not yet been copied, then it is
copied to location next and the forwarding pointer is installed into

This is safe as p.f; is not needed anymore.

3. If p is not a pointer at all, or p points outside from-space, then

forwarding does nothing.

N

Algorithm for Pointer Forwarding

function Forward(p)
if p pointsto from-space
then if p. f; pointsto to-space
thenreturn p. f;
elsefor eachfield f; of p
next . f; < P. f;
p. f1 < next
next <— next + Sizeof recordp
return p. f;
else return p

ALGORITHM13.8. Forwarding a pointer.
From Modern Compiler Implementation in ML,
Cambridge University Press, ©1998 Andrew W. Appel

/ Cheney’s Copying Garbage Collector'

¢ Uses breadth-first search to traverse the reachable data.

¢ The algorithm is non-recursive, requires no external area nor pointer

reversal, and is very simple to implement.

» The roots are first forwarded.
» The area between scan and next is used as a queue of all records that have
been copied but whose fields have not yet been forwarded.

» The area between the beginning of the to-space and scan contain records
that have been copied and forwarded; all pointers to this area point to
to-space.

¢ However, breadth-first search does not give as good locality of reference
as depth-first search.

)

_
-

N

Cheney’s Copying Garbage Collection Algorithm

scan < next « beginningof to-space
for eachrootr
I < Forwardr)
whilescan < next
for eachfield f; of recordatscan
scan. f; < Forwardscan. f;)
scan < scan+ Sizeof recordatscan

ALGORITHM13.9. Breadth-first copying garbage collection.
From Modern Compiler Implementation in ML,
Cambridge University Press, ©1998 Andrew W. Appel

N

)

K to-space \

from-space roots

7 scan

12 next
M p
M 371 4
T

to-space

from-space roots

to-space from-space roots

.

59
.
0

9

2

(a) Before collection (b) Roots forwarded

(c) One record scanned

FIGURE 13.10. Breadth-first copying collection.

From Modern Compiler Implementation in ML,

Cambridge University Press, ©1998 Andrew W. Appel

_ /

s

N

¢ GC takes time proportional to the amount of reachable data

¢ Each GC recovers

¢ As H > R, the cost approaches zero; suggesting that there is

¢ In a realistic setting,

Cost of Copying Garbage Collection

words of usable memory. Thus, the

amortized cost of each collection (in instructions per allocated word) is:
(‘3R

H

5 — R

, s0 GC cost is ¢3 instructions per allocated

_/

word.

K Incremental & Generational Garbage Collection' \

Incremental GC techniques allow memory reclamation to proceed
piecemeal while applications are running. Incremental techniques can
reduce the disruptiveness of garbage collection, and may even provide
real-time quarantees. They can also be generalized into concurrent
collections which proceed on another processor in parallel with actual

program execution.

Generational GC schemes improve efficiency and/or locality by garbage
collecting a smaller area more often, while exploiting typical lifetime
characteristics to avoid undue overhead from long-lived objects.
Because most collections are of a small area, typical pause times are also

short, and for many applications this is an acceptable alternative to

incremental collection.

_ /

-

Newly created objects tend to die soon but objects that are reachable after
many collections will probably survive for many collections more!

¢ Usually between

~

Generational Garbage Collection'

of all objects die within a few million
instructions (or before a Mbyte has been allocated); the majority dies
even more quickly (within tens of Kbytes of allocation).

Long-lived objects are saved repeatedly by a simple copying collector.

Generational collection avoids this repeated copying by segregating
objects into multiple areas according to their age, and collecting younger

areas more frequently than the older ones. Once objects have survived a

)

number of GCs, they are moved into an older generation (tenured).

4 N

Generational Garbage Collection'

¢ For generational GC to work, we must be able to collect younger
generation(s) without having to examine the older one(s).

¢ In generational GC, roots are not just program variables; they also
include any pointer from objects in old generations that points into
objects in the generation being collected.

¢ These inter-generational references must be remembered: the compiler
has to ensure that all store instructions check whether (pointer)
updates to old objects cross the write barrier. This is done by
remembered lists/sets, card/page marking using dirty bits.

¢ Fortunately, pointers from old to new objects are usually rare.

roots

méti/ﬁ\é?g) GO
ali[=
R
O

remembered
\
G2 \

L]
Ei

remembered
set]

set

(a) Before collection (b) After collection

F

IGURE 13.12. Generational collection. The bold arrow is one of the rare
pointers from an older generation to a newer one.
From Modern Compiler Implementation in ML,

Cambridge University Press, ©1998 Andrew W. Appel

_ /
4)

Cost of Generational Garbage Collection

¢ In practice, it is common for the youngest generation to be
live data.

¢ With a copying collector, i this generation, so the amortized

cost per word reclaimed in each minor collection is:
(?3R
10R—- R

which is very low (about 1 instruction).

¢ Performing a major collection can be more expensive. Typically such
collections are postponed as long as possible.

¢ Maintaining the remembered set also takes time; if the program updates
many pointers from old to new objects, generational GC can be more
expensive than non-generational GC!

)

\C
-

N

_/
~

Characteristics of Generational GCI

¢ In practice, generational GC performs quite well: the majority of objects
(that dies quickly) frees up enough space “free of cost” and copying the
few ones that survive does not cost much.

¢ For stop-and-collect garbage collection, generational GC has the
additional advantage of reducing the frequency of disruptive pauses. For
many programs without hard real-time deadlines, this is sufficient for
acceptable interactive use: most pauses are so brief that are not noticed
by users.

¢ Generational techniques are often used as an acceptable substitute for

more expensive incremental techniques.

)

~

f Incremental Garbage Collection'

¢ Incremental (and concurrent) techniques diminish long interruptions by
interleaving GC work with program execution.

The collector tries to collect the garbage; meanwhile, the compiled
program, called the mutator, keeps changing the graph of
reachable data.

Effectively, the GC work is spread out into more uniformly distributed

parcels of smaller and (usually) bounded size.

¢ An incremental GC algorithm is one in which the collector operates only

when the mutator requests.

¢ A concurrent GC algorithm is one which operates between or during any

instructions executed by the mutator.

4 N

Incremental GC using Tricolor Marking'

Classes of objects:

White objects are not yet visited by the depth-first or breadth-first search.

Grey objects have been visited (marked or copied), but their children have
not yet been examined (e.g. in Cheney’s algorithm these objects are

between scan and next).

Black objects have been marked, and their children are also marked (e.g. in

Cheney’s algorithm these objects have been scanned).

Starting with all objects white, objects pointed by roots are greyed. When
there are no grey objects, then all the white objects are garbage.

_

_ /
4)

Basic Tricolor Marking Algorithm

whilethereareary grey objects
selectagrey recordp
for eachfield f; of p
if recordp. f; is white
colorrecordp. f; grey
colorrecordp black

ALGORITHM13.13. Basic tricolor marking.
From Modern Compiler Implementation in ML,
Cambridge University Press, ©1998 Andrew W. Appel

_/
4 ™

Preserving Tricolor Invariants'

Write-barrier algorithms check every store by the mutator for
preservation of 1&2 (e.g. whenever the mutator stores a white pointer ¢ into

a black object b, it colors b grey).

Read-barrier algorithms check all fetch instructions (e.g. whenever the
mutator fetches a pointer / from any virtual memory page containing any
non-black object, a page fault handler colors every object on the page black

and makes all children of these objects grey).

N /

~

K Baker’s Incremental Algorithm'

Based on Cheney’s copying algorithm; employs a read-barrier.

¢ Garbage collection starts with a flip: the roles of the from-space and to-space
are swapped, and then all the roots are forwarded.

¢ Each time the mutator allocates new records, a few pointers of scan are
processed, advancing scan towards next by at least one word. New records are

allocated at the end of the to-space by decrementing limit.

¢ If a pointer fetched by the mutator points to from-space, the pointer is
forwarded immediately. Thus, the mutator always has pointers only to the
to-space; never to the from-space.

, then
scan will catch up with next before next reaches half-way through the

If the heap is divided into two semi-spaces of size , and

to-space. At this point, no more than half the to-space will be occupied by

4 N

Performance of Incremental GCI

¢ Any implementation of write or read-barrier must synchronize with the
collector. Software-based synchronization is expensive; in hardware, one
can take advantage of the synchronization which is implicit in page
faults: the OS ensures that no objects can access a faulting page before
the fault is processed.

¢ In general, because incremental GC requires extra coordination between
the mutator and the collector and higher conservatism, it is more
expensive than blocking GC (where all the objects are reclaimed every

time the collector is run).

Qewly allocated records. /

Interaction with the Compiler

The compiler for a garbage-collected language interacts with the garbage

collector by:

¢ generating code which allocates records (and initiates GC);
¢ describing locations of roots and those of them that are pointers;

¢ describing the layout of data records on the heap (i.e. determine the
number of fields and indicate which fields are pointers).

For some versions of incremental collectors, the compiler must also generate

instructions to implement the read or the write barrier.

_ /

N\

_/
~

Describing Data Layouts

¢ In statically typed or object-oriented languages, the simplest way of
identifying heap objects is to have the first word of each object point to
a special type or class descriptor record.

¢ This descriptor is generated by the static type information calculated by
the semantic analysis phase of the compiler. It is passed to the alloc()
function which initiates the GC.

¢ The pointer map (set of live temporaries that contain pointers) is best
keyed by return addresses: for each pointer that is live immediately after
a function call, the pointer map identifies its register or frame location.
To mark/forward all the roots, GC starts at the top of the stack and

scans downward, frame by frame.

)

4 N

Conservative Garbage Collection

¢ The compiler does not inform the collector which variables and
record-fields contain variables, so the collector must “guess”.

¢ Any bit-pattern pointing into the allocated heap is assumed to be a
possible pointer and keeps its pointed-to record live. However, since the
bit-pattern might really be an integer, the object cannot be moved and

some garbage objects might not be reclaimed.

¢ Conservative GC might thus occasionally suffer from disastrous space
leaks; several techniques for making these situations unlikely exist.

_ /

