Erlang: An Overview

Part 2 — Concurrency and Distribution

Processes

fib(0) -> 1;
fib(1) -> 1;
fib(N) when N > 0 >

fib(N-1) + Fib(N-2).

- Whenever an Erlang program is running, the code
IS executed by a process

« The process keeps track of the current program
point, the values of variables, the call stack, etc.

« Each process has a unique Process Identifier
(“Pid™), that can be used to identify the process

« Processes are concurrent (they can run in parallel)

Implementation

« Erlang processes are implemented by the VM'’s
runtime system, not by operating system threads

« Multitasking is preemptive (the virtual machine
does its own process switching and scheduling)

« Processes use very little memory, and switching
between processes is very fast

. Erlang VM can handle large numbers of processes
- Some applications use more than 100.000 processes

« On a multiprocessor/multicore machine, Erlang
processes can be scheduled to run in parallel on
separate CPUs/cores using multiple schedulers

E[wi Concurrent process execution

RLANG
fact(0) > 1;
fact(N) when N > 0 —->
N * fact(N-1).

. Different processes may be reading the same
program code at the same time

- They have their own data, program point, and stack —
only the text of the program is being shared (well, almost)

- The programmer does not have to think about other
processes updating the variables

E["l Message passing

’Pidz ! Message‘

Message
P1 P2

. “1"is the send operator (often called “bang!”
- The Pid of the receiver is used as the address
. Messages are sent asynchronously

- The sender continues immediately
« Any value can be sent as a message

E[."] Message gueues

Message Mailbox
g {Newest—» Oldest

. Each process has a message queue (mailbox)

- Arriving messages are placed in the queue
- No size limit — messages are kept until extracted

« A process receives a message when it extracts it
from the mailbox

- Does not have to take the first message in the queue

E["l Receiving a message

Message
P2

receive
Msg -> 1o:format('~w\n", [Msg])
end

recelve expressions are similar to case switches

- Patterns are used to match messages in the mailbox

- Messages in the queue are tested in order

« The first message that matches will be extracted
« A variable-pattern will match the first message in the queue

- Only one message can be extracted each time

["] Selective receive
ERLANG
receive
{foo, X, Y} > ...;
{bar, X} when ... -> ___;
ena--

. Patterns and guards let a programmer control
the priority with which messages will be handled

- Any other messages will remain in the mailbox
. The receive clauses are tried in order
- If no clause matches, the next message is tried

. If no message in the mailbox matches, the
process suspends, waiting for a new message

['l Receive with timeout
ERLANG
receive
{foo, X, Y} > ...;
{bar, X} when ... -> __._

after 1000 ->
% handle timeout

end

. A receive expression can have an after part

- The timeout value is either an integer (milliseconds), or
the atom "infinity" (wait forever)

- 0 (zero) means “just check the mailbox, then continue”

« The process will wait until a matching message
arrives, or the timeout limit is exceeded

. Soft real-time: approximate, no strict timing guarantees

E[."] Send and reply

Pid ! {hello, self()},
receive
{reply, Pid, String} ->
io:put_chars(String)

end
<:§E:> {hello,P1} — <j§?:>
— {reply,P2,"Hi!l"}
receive
{hello, Sender} ->
Sender ! {reply, self(), "Hi!"}
end
. Pids are often included in messages (self()), SO
the receiver can reply to the sender

- If the reply includes the Pid of the second process, it
Is easier for the first process to recognize the reply

E["l Message order

FIFO order No guaranteed order
(same pair of sender and receiver) (different senders, same receiver)

. Within a node, the only guaranteed message
order is when both the sender and receiver are
the same for both messages (First-In, First-Out)

- In the left figure, m1 will always arrive before m2 in
the message queue of P2 (if m1 is sent before m2)

- In the right figure, the arrival order can vary

E[= Selecting unordered messages

RLANG

receive
ml ml -> i1o:format('Got ml!'™)
end,
receive
e o m2 -> 1o:format("'Got m2!™)
end

« Using selective receive, we can choose which
messages to accept, even if they arrive in a
different order

. In this example, P2 will always print “Got m1!”
before “Got m2!”, even if m2 arrives before m1

- m2 will be ignored until m1 has been received

E[= Starting processes

RLANG
« The "spawn™ function creates a new process

. There are several versions of 'spawn’:

- spawn(fun() -> ... end)

« can also do spawn(fun f/0) or spawn(fun m:f/0)
- spawn(Module, Function, [Argl, -, ArgND

. Module:Function/N must be an exported function

. The new process will run the specified function

. The spawn operation always returns immediately

- The return value is the Pid of the new process
- The “parent” always knows the Pid of the “child”
- The child will not know its parent unless you tell it

E[."] Process termination

« A process terminates when:

_ It finishes the function call that it started with

- There is an exception that is not caught
« The purpose of 'exit' exceptions is to terminate a process
. “exit(normal)” is equivalent to finishing the initial call
« All messages sent to a terminated process will be
thrown away, without any warning
- No difference between throwing away and putting in
mailbox just before process terminates

« The same process identifier will not be used
again for a long time

E[wi A stateless server process

run() ->
Pid = spawn(fun echo/0),

Pid 1 {hello, self(), 42},
receive
{reply, Pid, 42} ->
Pid ! stop
end.

{hello,P1,42} —*
“— {reply,P2,42}

Client P1 P2 Server

echo() ->
receive
{hello, Sender, Value} ->
Sender ! {reply, self(), Value},
echo(); % loop!
stop ->
ok
end.

E["] A server process with state

RLANG

server(State) ->
receive

{get, Sender} ->
Sender ! {reply, self(), State},
server(State);

{set, Sender, Value} ->
Sender ! {reply, self(), ok},
server(Value); % loop with new state!

stop ->
ok

end.

« The parameter variables of a server loop can be
used to remember the current state

« Note: the recursive calls to server() are tail calls
(last calls) — the loop does not use stack space

« A server like this can run forever

[H A simple server example

ERLANG
-module(simple_server).
-export([start/0]).-

-spec start() -> pid().
start() ->
spawn(fun() -> loop(0) end).

-spec loop(integer()) -> no_return().
loop(Count) ->
NC = receive
{report, Pid} -> Pid ! Count;
_AnyOtherMsg -> Count + 1

end, Eshell V5.10.3 (abort ..."G)
100p(NC) - 1> P = simple_server:start().
<0.42.0>
2> P I foo.
foo
3> [P ! X || lists:seq(1,9)]-
[1.2,3,4,5,6,7,8,9]

4> P 1 {report, self(Q},
receive M -> M end.
10

E[."] Hot code swapping

-module(server).
-export([start/0, loop/1]).

start() -> spawn(fun() -> loop(0) end).

loop(State) ->
receive
{get, Sender} ->

server:loop(State);
{set, Sender, Value} ->

server:loop(Value);

« When we use “module:function(...)”, Erlang
will always call the latest version of the module
- If we recompile and reload the server module, the

process will jump to the new code after handling the
next message — we can fix bugs without restarting!

E["l Hiding message details

get _request(ServerPid) ->
ServerPid ! {get, self(Q}.

set_request(Value, ServerPid) ->
ServerPid ! {set, self(), Value}.

wait_for_reply(ServerPid) ->
receive
{reply, ServerPid, Value} -> Value
end.

stop_server(ServerPid) ->
ServerPid ! stop.

« Using interface functions keeps the clients from
knowing about the format of the messages

- You may need to change the message format later
. It is the client who calls the sel ¥() function here

E[= Registered processes

Pid = spawn(...),

register(my_server, Pid),
my_server ! {set, self(), 42},

42 = get_request(my_server),

Pid = whereis(my_server)
« A process can be registered under a name

- the name can be any atom

« Any process can send a message to a registered
process, or look up the Pid

. The Pid might change (if the process is restarted
and re-registered), but the name stays the same

E[H Links and exit signals

]exit(fubar)\

@‘Q fubsr—s @

« Any two processes can be linked
- Links are always bidirectional (two-way)

. When a process dies, an exit signal is sent to all
linked processes, which are also killed

- Normal exit does not kill other processes

E[-"] Trapping exit signals

trap_ e.X ; t = true
%%%% %%%% //’ P3 "II'

{"EXIT",P2,fubar}

. If a process sets its trap_exit flag, all signals
will be caught and turned into normal messages

- process_fTlag(trap_exit, true)
- {"EXIT", Pid, ErrorTerm}

« This way, a process can watch other processes
- 2-way links guarantee that sub-processes are dead

['1 Robust systems through layers

ERLANG

/\

i 6OFe

. Each layer supervises the next layer and restarts
the processes if they crash

. The top layers use well-tested, very reliable
libraries (OTP) that practically never crash

. The bottom layers may be complicated and less
reliable programs that can crash or hang

E[-"] Distribution

[foo.bar.se] $ erl -name fred
Erlang (BEAM) emulator version 5.10.3

Eshell V5.10.3 (abort with 7G)
(fred@foo.-bar.se)1> node() -
"fred@foo.bar.se*"
(fred@foo.bar.se)2>

« Running “er1” with the flag “-name xxx”

~ starts the Erlang network distribution system

- makes the virtual machine emulator a “node”
« the node name is the atom 'xXxx@host.domain'

. Erlang nodes can communicate over the network

- but first they must find each other
- simple security based on secret cookies

-
[vl Connecting nodes
ERLANG
(fred@foo.bar.se)2> net_adm:ping(“barney@foo.bar.se").
pong
(fred@foo.bar.se)3> net_adm:ping("wilma@foo.bar.se").
pang

(fred@foo.bar.se)4>

. Nodes are connected the first time they try to
communicate — after that, they stay in touch

- A node can also supervise another node

« The function “net_adm:ping(Node)” IS the easiest
way to set up a connection between nodes

_ returns either “pong” or “pang” ©

. We can also send a message to a registered
process using “{Name,Node} ! Message”

E[-"] Distribution is transparent

RLANG

« One can send a Pid from one node to another
- Pids are unique, even over different nodes

. We can send a message to any process through
its Pid — even if the process is on another node

- There is no difference (except that it takes more time
to send messages over networks)

- We don't have to know where processes are

- We can make programs work on multiple computers
with no changes at all in the code (no shared data)

« We can run several Erlang nodes (with different
names) on the same computer — good for testing

E['l Running remote processes

global :register_name(my_global_server, P),

global :send(my_global _server, Message)

P = spawn("barney@foo.bar.se”, Module, Function, ArgList),

. We can use variants of the spawn function to
start new processes directly on another node

. The module "global* contains functions for

- registering and using named processes over the
whole network of connected nodes

« Not same namespace as the local “register(...)”"
« must use “global :send(...)", not “1”

- setting global locks

E[."] Ports — talking to the outside

RLANG

Portld = open_port({spawn, ‘‘command"}, [binary]),

Portld ! {self(), {command, Data}}

Portld ! {self(), close}

. Talks to an external (or linked-in) C program
. A port is connected to the process that opened it
. The port sends data to the process in messages
- binary object
- packet (list of bytes)
- one line at a time (list of bytes/characters)

« A process can send data to the port

E[H Erlang: An Overview

Part 5 — Parallel Programming in Erlang

E["q Benchmarking programs

e Recall the Quick Sort function

gsort([1) -> [1:
gsort([P|Xs]) ->

gsort([X |] X <= Xs, X =< P])

++ [P] % pivot element

++ gsort([X || X <- Xs, P < X])-

e Let's create some test data for it

random_list(N) ->
[random:uniform(12345678) || _ <- lists:seq(1,N)]-

4> L = gsort:random_list(200000).
. A random list with 200000 elements ...

5> timer:tc(gsort, gsort, [L])-

{427404,
[42,237,342,401,593,623,858,911,959,1111,1144,1267,

_1402,1405,1529,1563,1638,1643,1729,1755,1864,1899,
1926,1968,2014] .. .1}

microseconds

E[H Benchmarking programs

o Let’s define a benchmarking function

benchmark(Fun, L) ->
Rs = [timer:tc(?MODULE, Fun, [L])

Il _ <- lists:seq(1, 100)],
lists:sum([T |] {T,_} <- Rs]) /7 (1000*length(Rs)).

* l.e. run 100 times, average and convert to msecs

10> qgsort:benchmark(qgsort, L).

427.64902

11> erlang:system_info(schedulers).
8

number of OS threads that the
runtime system of the VM uses
for running Erlang processes

E["q Parallel sorting (naive)

» Let’s parallelize the function (start of attempt)

sort elements greater than
pivot in another process

pgsort([1) -> [1:
pgsort([P|Xs]) ->
spawn_link(fun O ->
pgsort([X |] X <- Xs, P < X])
end),
pgsort([X || X <- Xs, X =< P])

++ [P]
how do we get the result here?

++ ?7?7.

\ s

Parallel sorting (naive)

ERLANG
» Let's parallelize the function (complete attempt)

get the Pid of the executing process

pgsort([1) -> [1:
pgsort([P|Xs]) ->
Parent = self(),
spawn_link(fun QO ->
Parent ! pgsort([X || X <- Xs, P < X])
end),
pgsort([X || X <- Xs, X =< P])
++ [P]

++ receive Ys -> Ys end.

send the result back to the parent

wait to get the result of sorting the e GO SEnE G ER, L)
elements greater than pivot 427.64902

15> qgsort:benchmark(pgsort, L).
826.27111

®

E[.'] Controlling granularity

pgsort2(L) -> pgsort2(5, L).

pgsort2(0, L) -> gsort(L);
pagsort2(_, [1) -> [I;
pgsort2(D, [P]Xs]) —>
Par = self(),
spawn_link(fun O ->
Par ! pqgsort2(D-1,[X |] X <- Xs, P < XD
end),
pgsort2(D-1, [X || X <- Xs, X =< P])
++ [P]
++ receive Ys -> Ys end.

17> gsort:benchmark(gsort, L).
427 .64902

18> qgsort:benchmark(pgsort, L).
826.27111

19> qgsort:benchmark(pgsort2,L
236.19359

E[."] Profiling parallelism

file to store profiling information in

gunction to profilej

21> percept:profile('prof.data",
{qgsort,pgsort2,[L]}, [procs]).-

Starting profiling.
ok
22> percept:analyze(''prof.data™).
Parsing: "prof.data"”
Consolidating. ..
Parsed 255 entries in 0.116107 s.
Consolidating. ..

32 created processes.

O opened ports.
ok
23> percept:start_webserver(8080).
{started, " laptop',8080}

.'] Profiling with percept

() percept - Google Chrome e & |

percept

shows number of
runnable processes
at each point

Correctness?

31> gsort:pgsort2(L) == gsort:gsort(L).
false

32> gsort:pgsort2(**hello world™).

" edhllloorw™

"q What's going on?

pgsort2(D, [P]Xs]) ->
Par = self(),
spawn_link(fun O ->
Par 1 _._.
end),
pgsort2(D-1, [X || X <- Xs, X =< P])
++ [P]
++ receive Ys -> Ys end.

What's going on?

pgsort2(D, [P]Xs]) ->
Parl = self(),
spawn_link(fun QO ->
(Parl 1 ___|
end),
Par = self(),
spawn_link(fun) ->
(Par 1 .__ |
end),
pgsort2(D-2, [X || X <- Xs, X =< P])
++ [P]
++| receive Ys]-> Ys end
++ [P1]
++(receive Ysl|-> Ysl end.

["'] Tagging messages

ERLANG

» Create a globally unique reference
Ref = make_ref()

* Send the message tagged with the reference
Par ! {Ref, Msg}

» Match the reference on receipt
receive {Ref, Msg} -> ... end

» Picks the right message from the mailbox

A correct parallel sort

pgsort3(L) -> pgsort3(5, L).

pgsort3(0, L) -> qgsort(L);
pgsort3(_, [-> [1:
pgsort3(D, [P]Xs]) —>
Par = self(),
Ref = make ref(),
spawn_link(fun () —>
Gs = [X]| X <- Xs, P < X],
Par ! {Ref, pqgsort3(D-1, Gs)}
end),
pgsort3(D-1, [X J] X <= Xs, X =< P])
++ [P]
++ receive {Ref, Ys} -> Ys end.

E["'] Performance?

36> gsort:benchmark(gsort, L).
427 .64902

37> gsort:benchmark(pgsort, L).
826.27111

38> gsort:benchmark(pgsort2, L).
236.19359

39> gsort:benchmark(pgsort3, L).
232.18068

What is copied here?

pgsort3(L) -> pgsort3(5, L).

pgsort3(0, L) -> qgsort(L);
pgsort3(_, [1) -> [I;
pgsort3(D, [P|Xs]) ->

Par = self(),

Ref = make_ref(),

spawn_link(fun () ->

Gs = [X || X <- , P <A,
1 { , pgsort3(D-1, Gs)}

terms in that
the closure needs access
to are copied to the heap
of the spawned process

end),
pgsort3(D-1, [X || X <- Xs, X =< P])
++ [P]
++ receive {Ref, Ys} -> Ys end.

"'] A parallel sort with less copying

RLANG
pgsort3(L) -> pgsort3(5, L).

pgsort3(0, L) -> qgsort(L);
pgsort3(_, [-> [I:
pgsort3(D, [P]Xs]) ->

Par = self(),

Ref = make_ref(),

Gs = [X |] X <= Xs, P < X],

spawn_link(fun O ->

! {Ret, pgsort3(b-1, Cs)}
end),

pgsort3(D-1, [X ||l X <- Xs, X =< P])
++ [P]
++ receive {Ref, Ys} -> Ys end.

copy only the part of
the list that the process
needs to sort

