
Erlang: An Overview in Four Parts

Part 1 – Sequential Erlang

Thanks to Richard Carlsson for the original version of many of the slides in this part

Erlang buzzwords
Functional (strict)
Single-assignment
Dynamically typed
Concurrent
Distributed
Message passing
Soft real-time
Fault tolerant
Shared-nothing

Automatic memory
management (GC)
Virtual Machine (BEAM)
Native code (HiPE)
Dynamic code loading
Hot-swapping code
Multiprocessor support
OTP (Open Telecom
Platform) libraries
Open source

Background
Developed by Ericsson, Sweden
− Experiments 1982-1986 with existing languages

Higher productivity, fewer errors
Suitable for writing (large) telecom applications
Must handle concurrency and error recovery

− No good match - decided to make their own
1986-1987: First experiments with own language
Erlang (after Danish mathematician A. K. Erlang)
1988-1989: Internal use
1990-1998: Erlang sold as a product by Ericsson

− Open Source (MPL-based license) since 1998
Development still done by Ericsson

Hello, World!

'%' starts a comment
'.' ends each declaration
Every function must be in a module
− One module per source file
− Source file name is module name + “.erl”

':' used for calling functions in other modules

%% File: hello.erl
-module(hello).
-export([run/0]).

-spec run() -> 'ok'.
run() -> io:format("Hello, World!\n").

Running Erlang

The Erlang VM emulator is called 'erl'
The interactive shell lets you write any Erlang
expressions and run them (must end with '.')
The “1>”, “2>”, etc. is the shell input prompt
The “halt()” function call exits the emulator

$ erl
Erlang (BEAM) emulator version 5.10.3

Eshell V5.10.3 (abort with ^G)
1> 6*7.
42
2> halt().
$

Compiling a module

The “c(Module)” built-in shell function compiles a
module and loads it into the system
− If you change something and do “c(Module)” again,

the new version of the module will replace the old
There is also a standalone compiler called “erlc”
− Running “erlc hello.erl” creates “hello.beam”
− Can be used in a normal Makefile

$ erl
Erlang (BEAM) emulator version 5.10.3

Eshell V5.10.3 (abort with ^G)
1> c(hello).
{ok,hello}
2>

Running a program

Compile all your modules
Call the exported function that you want to run,
using “module:function(...).”
The final value is always printed in the shell
− “ok” is the return value from io:format(...)

Eshell V5.10.3 (abort with ^G)
1> c(hello).
{ok,hello}
2> hello:run().
Hello, World!
ok
3>

A recursive function

Variables start with upper-case characters!
';' separates function clauses; last clause ends with '.'

Variables are local to the function clause
Pattern matching and 'when' guards to select clauses

Run-time error if no clause matches (e.g., N < 0)
Run-time error if N is not an integer

-module(factorial).
-export([fact/1]).

-spec fact(non_neg_integer()) -> pos_integer().
fact(N) when N > 0 ->

N * fact(N-1);
fact(0) ->

1.

Tail recursion with accumulator

The arity is part of the function name: fact/1≠fact/2

Non-exported functions are local to the module
Function definitions cannot be nested (as in C)
Last call optimization is performed: the stack does not
grow if the result is the value of another function call

-module(factorial).
-export([fact/1]).

-spec fact(non_neg_integer()) -> pos_integer().
fact(N) -> fact(N, 1).

fact(N, Fact) when N > 0 ->
fact(N-1, Fact*N);

fact(0, Fact) ->
Fact.

Recursion over lists

Pattern matching selects components of the data
“_” is a “don't care”-pattern (not a variable)
“[Head|Tail]” is the syntax for a single list cell
“[]” is the empty list (often called “nil”)
“[X,Y,Z]” is a list with exactly three elements
“[X,Y,Z|Tail]” has three or more elements

-module(list).
-export([last/1]).

-spec last([T]) -> T.
last([Element]) -> Element;
last([_|Rest]) -> last(Rest).

List recursion with accumulator

The same syntax is used to construct lists
Strings are simply lists of Unicode characters

− "Hello" = [$H, $e, $l, $l, $o] = [72,101,108,108,111]

− "" = []

• All list functions can be used on strings

-module(list).
-export([reverse/1]).

-spec reverse([T]) -> [T].
reverse(List) -> reverse(List, []).

reverse([Head|Tail], Acc) ->
reverse(Tail, [Head|Acc]);

reverse([], Acc) ->
Acc.

Numbers

Arbitrary-size integers (but usually just one word)
#-notation for base-N integers
$-notation for character codes (ISO-8859-1)
Normal floating-point numbers (standard syntax)
− cannot start with just a '.', as in e.g. C

12345
-9876
16#ffff
2#010101
$A
0.0
3.1415926
6.023e+23

Atoms

Must start with lower-case character or be quoted
Single-quotes are used to create arbitrary atoms
Similar to hashed strings
− Use only one word of data (just like a small integer)
− Constant-time equality test (e.g., in pattern matching)
− At run-time: atom_to_list(Atom), list_to_atom(List)

true % Boolean
false % Boolean
ok % used as “void” value
hello_world
doNotUseCamelCaseInAtoms
'This is also an atom'
'foo@bar.baz'

Tuples

Tuples are the main data constructor in Erlang
A tuple whose 1st element is an atom is called a
tagged tuple - this is used like constructors in ML
− Just a convention – but almost all code uses this

The elements of a tuple can be any values
At run-time: tuple_to_list(Tup), list_to_tuple(List)

{}
{42}
{1,2,3,4}
{movie, "Yojimbo", 1961, "Kurosawa"}
{foo, {bar, X},

{baz, Y},
[1,2,3,4,5]}

Other data types
Functions
− Anonymous and other

Bit streams
− Sequences of bits
− <<0,1,2,...,255>>

Process identifiers
− Usually called 'Pids'

References
− Unique “cookies”
− R = make_ref()

No separate Booleans
− atoms true/false

Erlang values in
general are often
called “terms”
All terms are ordered
and can be compared
with <, >, ==, =:=, etc.

Type tests and conversions
Note that is_list only
looks at the first cell of
the list, not the rest
A list cell whose tail is
not another list cell or
an empty list is called
an “improper list”.
− Avoid creating them!

Some conversion
functions are just for
debugging: avoid!
− pid_to_list(Pid)

is_integer(X)
is_float(X)
is_number(X)
is_atom(X)
is_tuple(X)
is_pid(X)
is_reference(X)
is_function(X)
is_list(X) % [] or [_|_]

atom_to_list(A)
list_to_tuple(L)
binary_to_list(B)

term_to_binary(X)
binary_to_term(B)

Built-in functions (BIFs)
Implemented in C
All the type tests and
conversions are BIFs
Most BIFs (not all) are
in the module “erlang”
Many common BIFs
are auto-imported
(recognized without
writing “erlang:...”)
Operators (+,-,*,/,...)
are also really BIFs

length(List)
tuple_size(Tuple)
element(N, Tuple)
setelement(N, Tuple, Val)

abs(N)
round(N)
trunc(N)

throw(Term)
halt()

time()
date()
now()

self()
spawn(Function)
exit(Term)

Standard libraries
Application Libraries

− erts
erlang

− kernel
code
file, filelib
inet
os

− stdlib
lists
dict, ordict
sets, ordsets, gb_sets
gb_trees
ets, dets

Written in Erlang
“Applications” are
groups of modules
− Libraries
− Application programs

Servers/daemons
Tools
GUI system (gs, wx)

Expressions
Boolean and/or/xor are
strict (always evaluate
both arguments)
Use andalso/orelse for
short-circuit evaluation
“=:=” for equality, not “=”
We can always use
parentheses when not
absolutely certain about
the precedence

%% the usual operators
(X + Y) / -Z * 10 – 1

%% boolean
X and not Y or (Z xor W)
(X andalso Y) orelse Z

%% bitwise operators
((X bor Y) band 15) bsl 2

%% comparisons
X /= Y % not !=
X =< Y % not <=

%% list operators
List1 ++ List2

Fun expressions
Anonymous functions
(lambda expressions)
− Usually called “funs”

Can have several
arguments and clauses
All variables in the
patterns are new
− All variable bindings in

the fun are local
− Variables bound in the

environment can be
used in the fun-body

F1 = fun () -> 42 end
42 = F1()

F2 = fun (X) -> X + 1 end
42 = F2(41)

F3 = fun (X, Y) ->
{X, Y, F1}

end

F4 = fun ({foo, X}, Y) ->
X + Y;

({bar, X}, Y) ->
X - Y;

(_, Y) ->
Y

end

F5 = fun f/3

F6 = fun mod:f/3

Pattern matching with '='

Successful matching binds the variables
− But only if they are not already bound to a value!
− A new variable can also be repeated in a pattern
− Previously bound variables can be used in patterns

Match failure causes runtime error (badmatch)

Tuple = {foo, 42, "hello"},
{X, Y, Z} = Tuple,

List = [5, 5, 5, 4, 3, 2, 1],
[A, A | Rest] = List,

Struct = {foo, [5,6,7,8], {17, 42}},
{foo, [A|Tail], {N, Y}} = Struct

Case switches
Any number of clauses
Patterns and guards, just as
in functions
';' separates clauses

Use “_” as catch-all
Variables may also begin
with underscore
− Signals “I don't intend to use

the value of this variable”
− Compiler won't warn if this

variable is not used

• OBS: Variables may be
already bound in patterns!

case List of
[X|Xs] when X >= 0 ->

X + f(Xs);
[_X|Xs] ->

f(Xs);
[] ->

0;
_ ->

throw(error)
end

%% boolean switch:
case Bool of

true -> ... ;
false -> ...

end

If switches and guard details
Like a case switch
without the patterns
and the “when” keyword
Need to use “true” as
catch-all guard (Ugly!)
Guards are special
− Comma-separated list
− Only specific built-in

functions (and all
operators)

− No side effects

if
0 =< X, X < 256 ->

X + f(Xs);
true ->

f(Xs)
end

case 0 =< X and X < 256 of
true ->

X + f(Xs);
false ->

f(Xs)
end

The above construct is better written as

List comprehensions
Left of the “||” is an
expression template
“Pattern <- List” is a
generator
− Elements are picked

from the list in order
The other expressions
are Boolean filters
If there are multiple
generators, you get all
combinations of values

%% map
[f(X) || X <- List]

%% filter
[X || X <- Xs, X > 0]

Eshell V5.10.3 (abort ...^G)
1> L = [1,2,3].
[1,2,3]
2> [X+1 || X <- L].
[2,3,4]
3> [2*X || X <- L, X < 3].
[2,4]
4> [X+Y || X <- L, Y <- L].
[2,3,4,3,4,5,4,5,6]

List comprehensions: examples
%% quicksort of a list
qsort([]) -> [];
qsort([P|Xs]) ->

qsort([X || X <- Xs, X =< P])
++ [P] % pivot element
++ qsort([X || X <- Xs, P < X]).

%% generate all permutations of a list
perms([]) -> [[]];
perms(L) ->

[[X|T] || X <- L, T <- perms(L -- [X])].

Using comprehensions we get very compact code
...which sometimes can take some effort to understand

Try writing the same code without comprehensions

Bit strings and comprehensions
Bit string pattern matching:

Bit string comprehensions:

Of course, one can also write:

case <<8:4, 42:6>> of
<<A:7/integer, B/bits>> -> {A,B}

end

case <<8:4, 42:6>> of
<<A:3/integer, B:A/bits, C/bits>> -> {A,B,C}

end

<< <<X:2>> || <<X:3>> <= Bits, X < 4 >>

[<<X:2>> || <<X:3>> <= Bits, X < 4]

Catching exceptions
Three classes of
exceptions
− throw: user-defined
− error: runtime errors
− exit: end process
− Only catch throw

exceptions, normally
(implicit if left out)

Re-thrown if no catch-
clause matches
“after” part is always
run (side effects only)

try
lookup(X)

catch
not_found ->

use_default(X);
exit:Term ->

handle_exit(Term)
end

%% with 'of' and 'after'
try lookup(X, File) of

Y when Y > 0 -> f(Y);
Y -> g(Y)

catch
...

after
close_file(File)

end

Old-style exception handling
“catch Expr”
− Value of “Expr” if no

exception
− Value X of “throw(X)”

for a throw-exception
− “{'EXIT',Term}” for

other exceptions
Hard to tell what
happened (not safe)
Mixes up errors/exits
In lots of old code

Val = (catch lookup(X)),

case Val of
not_found ->

%% probably thrown
use_default(X);

{'EXIT', Term} ->
handle_exit(Term);

_ ->
Val

end

Record syntax
Records are just a
syntax for working with
tagged tuples
You don't have to
remember element
order and tuple size
Good for internal work
within a module
Not so good in public
interfaces (users must
have same definition!)

-record(foo,
{a = 0 :: integer(),
b :: integer()}).

{foo, 0, 1} = #foo{b = 1}

R = #foo{}
{foo, 0, undefined} = R

{foo, 0, 2} = R#foo{b=2}

{foo, 2, 1} = R#foo{b=1, a=2}

0 = R#foo.a
undefined = R#foo.b

f(#foo{b = undefined}) -> 1;
f(#foo{a = A, b = B})

when B > 0 -> A + B;
f(#foo{}) -> 0.

Preprocessor
C-style token-level
preprocessor
− Runs after tokenizing,

but before parsing
Record definitions
often put in header
files, to be included
Use macros mainly for
constants
Use functions instead
of macros if you can
(compiler can inline)

-include("defs.hrl").

-ifndef(PI).
-define(PI, 3.1415926).
-endif.

area(R) -> ?PI * (R*R).

-define(foo(X), {foo,X+1}).

{foo,42} = ?foo(41)

%% pre-defined macros
?MODULE
?LINE

Dialyzer: A defect detection tool
A static analyzer that identifies discrepancies in
Erlang code bases
− code points where something is wrong

often a bug
or in any case something that needs fixing

Fully automatic
Extremely easy to use
Fast and scalable
Sound for defect detection
− “Dialyzer is never wrong”

Dialyzer
Part of the Erlang/OTP distribution since 2007
Detects
− Definite type errors
− API violations
− Unreachable and dead code
− Opacity violations
− Concurrency errors

Data races (-Wrace_conditions)

Experimental extensions with
− Stronger type inference: type dependencies
− Detection of message passing errors & deadlocks

How to use Dialyzer
First build a PLT (needs to be done once)

Once this finishes, analyze your application

If there are unknown functions, you may need to
add more Erlang/OTP applications to the PLT

> dialyzer --build_plt --apps erts kernel stdlib

> cd my_app
> erlc +debug_info -o ebin src/*.erl
> dialyzer ebin

> dialyzer --add_to_plt --apps mnesia inets

Part 4 – Testing Erlang Programs

Erlang: An Overview in Four Parts

• How do we know that software works?
– One popular method is to use testing

• Let’s do manual testing of Erlang programs first
– Relatively easy due to the interactive shell

%% my first sort program, inspired by QuickSort
-module(my_sort).
-export([sort/1]).

-spec sort([T]) -> [T].
sort([]) -> [];
sort([P|Xs]) ->

sort([X || X <- Xs, X < P])
++ [P] ++ sort([X || X <- Xs, P < X]).

A sorting program

Eshell V5.10.3 (abort with ^G)
1> c(my_sort).
{ok,my_sort}
2> my_sort:sort([]).
[]
3> my_sort:sort([17,42]).
[17,42]
4> my_sort:sort([42,17]).
[17,42]
5> my_sort:sort([3,1,2]).
[1,2,3]

• Seems to work!
• However, perhaps it’s not a good idea to execute

these tests repeatedly by hand
– Let’s put them in the file...
– ... and exploit the power of pattern matching

Manual testing in the shell

• And now let’s use EUnit to run them automatically

-module(my_sort).
-export([sort/1, sort_test/0]).

-spec sort([T]) -> [T].
sort([]) -> [];
sort([P|Xs]) ->

sort([X || X <- Xs, X < P])
++ [P] ++ sort([X || X <- Xs, P < X]).

-spec sort_test() -> ok.
sort_test() ->

[] = sort([]),
[17,42] = sort([17,42]),
[17,42] = sort([42,17]),
[1,2,3] = sort([3,1,2]),
ok.

A sorting program with unit tests

Convention:
program code in this and
the following slides use
boldface for showing the
parts of the program that
were added or changed
w.r.t. the previous code

• EUnit in its simplest form is a test framework to
automatically run all _test functions in a module

• Calling eunit:test(Module) was all that was
needed here

• However, EUnit can do much more...
– Let us, temporarily, change one test to:

[1,3,2] = sort([3,1,2])

– and see what happens

6> my_sort:sort_test().
ok
7> eunit:test(my_sort).

Test passed.
ok

Running tests using EUnit

• Reports number of tests that failed and why
– the report is pretty good, but it can get even better
– using EUnit macros

8> c(my_sort).
{ok,my_sort}
9> eunit:test(my_sort).
my_sort: sort_test (module 'my_sort')...*failed*
in function my_sort:sort_test/0 (my_sort.erl, line 13)
** error:{badmatch,[1,2,3]}

==
Failed: 1. Skipped: 0. Passed: 0.

error

EUnit and failures

%% my first sort program, inspired by QuickSort
-module(my_sort).
-export([sort/1, sort_test/0]).

-include_lib("eunit/include/eunit.hrl").

-spec sort([T]) -> [T].
sort([]) -> [];
sort([P|Xs]) ->

sort([X || X <- Xs, X < P])
++ [P] ++ sort([X || X <- Xs, P < X]).

-spec sort_test() -> ok.
sort_test() ->

?assertEqual([], sort([])),
?assertEqual([17,42], sort([17,42])),
?assertEqual([17,42], sort([42,17])),
?assertEqual([1,3,2], sort([3,1,2])),
ok.

A sorting program with EUnit tests

• This report is much more detailed
• But, it considers the complete set of tests as one

10> c(my_sort).
my_sort.erl:2 Warning: function sort_test/0 already exported
{ok,my_sort}
11> eunit:test(my_sort).
my_sort: sort_test (module 'my_sort')...*failed*
in function my_sort:'-sort_test/0-fun...'/1 (my_sort.erl, line 15)
in call from my_sort:sort_test/0 (my_sort.erl, line 15)
** error:{assertEqual_failed,[{module,my_sort},

{line,15},
{expression,"sort ([3,1,2])"},
{expected,[1,3,2]},
{value,[1,2,3]}]}

==
Failed: 1. Skipped: 0. Passed: 0.

error

Unit testing using EUnit macros

-module(my_sort).
-export([sort/1]).

-include_lib("eunit/include/eunit.hrl").

sort([]) -> ...

sort_test_() -> % notice trailing underscore
[test_zero(), test_two(), test_three()].

test_zero() ->
[?_assertEqual([], sort([]))]. % notice underscores

test_two() ->
[?_assertEqual([17,42], sort([17,42])),
?_assertEqual([17,42], sort([42,17]))].

test_three() ->
[?_assertEqual([1,3,2], sort([3,1,2]))].

EUnit test generators

• EUnit now reports accurate numbers of passed
and failed test cases

• In fact, we can test EUnit generators individually

12> c(my_sort).
{ok,my_sort}
13> eunit:test(my_sort).
my_sort:20 test_three...*failed*
in function my_sort:'-test_three/0-fun...'/1 (my_sort.erl, line 20)
** error:{assertEqual_failed,[{module,my_sort},

{line,20},
{expression,"sort ([3,1,2])"},
{expected,[1,3,2]},
{value,[1,2,3]}]}

===
Failed: 1. Skipped: 0. Passed: 3.

error

EUnit test generators

• This works only for test generator functions
(not very impressive, as there is only one in this example)

• There are other forms that may come handy (RTFM)

e.g. {dir,Path} to run all tests for the modules in Path

14> eunit:test({generator, fun my_sort:sort_test_/0}).
my_sort:20 test_three...*failed*
in function my_sort:'-test_three/0-fun...'/1 (my_sort.erl, line 20)
** error:{assertEqual_failed,[{module,my_sort},

{line,20},
{expression,"sort ([3,1,2])"},
{expected,[1,3,2]},
{value,[1,2,3]}]}

===
Failed: 1. Skipped: 0. Passed: 3.

error

EUnit test generators

• Let us undo the error in the test_three test
• add one more EUnit generator

• and run again: all tests and just the new ones
15> c(my_sort).
{ok,my_sort}
16> eunit:test(my_sort).
All 6 tests passed

ok
17> eunit:test({generator, fun my_sort:another_sort_test_/0}).
All 2 tests passed

ok

EUnit test generators

another_sort_test_() ->
[test_four()].

test_four() ->
[?_assertEqual([1,2,3,4], sort([1,3,2,4])),
?_assertEqual([1,2,3,4], sort([1,4,2,3]))].

• More macros
– Utility, assert, debugging, controlling compilation

• Support to run tests in parallel
• Lazy generators
• Fixtures for adding scaffolding around tests

– Allow to define setup and teardown functions for the
state that each of the tests may need

– Useful for testing stateful systems

For more information consult the EUnit manual

There is more to EUnit...

Towards automated testing
• Testing accounts for a large part of software cost
• Writing (unit) tests by hand is

– boring and tedious
– difficult to be convinced that all cases were covered

• Why not automate the process?
– Yes, but how?

• One approach is property-based testing
– Instead of writing test cases, let’s write properties that

we would like our software (functions) to satisfy
– and use a tool that can automatically generate random

inputs to test these properties

-module(my_sort).
-export([sort/1]).

-include_lib("proper/include/proper.hrl").
-include_lib("eunit/include/eunit.hrl").

-spec sort([T]) -> [T].
sort([]) -> [];
sort([P|Xs]) ->

sort([X || X <- Xs, X < P])
++ [P] ++ sort([X || X <- Xs, P < X]).

prop_ordered() ->
?FORALL(L, list(integer()), ordered(sort(L))).

ordered([]) -> true;
ordered([_]) -> true;
ordered([A,B|T]) -> A =< B andalso ordered([B|T]).

Property for the sorting program

• Runs any number of “random” tests we feel like
• If all tests satisfy the property, reports that all

tests passed

$ erl -pa /path/to/proper/ebin
Erlang (BEAM) emulator version 5.10.3

Eshell V5.10.3 (abort with ^G)
1> c(my_sort).
{ok,my_sort}
2> proper:quickcheck(my_sort:prop_ordered()).
.......... 100 dots
OK: Passed 100 tests
true
3> proper:quickcheck(my_sort:prop_ordered(), 10000).
.......... 10000 dots
OK: Passed 10000 tests
true

Testing the ordered property

-module(my_sort).
-export([sort/1]).

-include_lib("proper/include/proper.hrl").
-include_lib("eunit/include/eunit.hrl").

-spec sort([T]) -> [T].
sort([]) -> [];
sort([P|Xs]) ->

sort([X || X <- Xs, X < P])
++ [P] ++ sort([X || X <- Xs, P < X]).

prop_ordered() ->
?FORALL(L, list(integer()), ordered(sort(L))).

prop_same_length() ->
?FORALL(L, list(integer()),

length(L) =:= length(sort(L))).

ordered([]) -> ...

Another property for sorting

4> c(my_sort).
{ok,my_sort}
5> proper:quickcheck(my_sort:prop_same_length()).
.....!
Failed: After 6 test(s).
[0,0]

Shrinking (0 time(s))
[0,0]
false
6> proper:quickcheck(my_sort:prop_same_length()).
............!
Failed: After 13 test(s).
[2,-8,-3,1,1]

Shrinking .(1 time(s))
[1,1]
false

Testing the same length property

• Let us suppose that we actually wanted that our
program only sorts lists without duplicates

• How would we have to write the property then?
prop_same_length() ->

?FORALL(L, list(integer()),
?IMPLIES(no_duplicates(L),

length(L) =:= length(sort(L)))).

%% better implementations of no_duplicates/1 exist
no_duplicates([]) -> true;
no_duplicates([A|T]) ->

not lists:member(A, T) andalso no_duplicates(T).

7> proper:quickcheck(my_sort:prop_same_length()).
..........x.x...............x.xx..x....xx.xxxx.....x....xx.xxx
.........xx.x.x.......x.x.x.x.x......xxxxx.xxxxxx...x.x.x.x.x.
OK: Passed 100 tests

Properties with preconditions

• An even better way is to try to generate lists
without duplicates in the first place!

list_no_dupls(T) ->
?LET(L, list(T), remove_duplicates(L)).

%% better versions of remove_duplicates/1 exist
remove_duplicates([]) -> [];
remove_duplicates([A|T]) ->
case lists:member(A, T) of
true -> remove_duplicates(T);
false -> [A|remove_duplicates(T)]

end.

7> proper:quickcheck(my_sort:prop_same_length()).
.......... 100 dots
OK: Passed 100 tests

prop_same_length() ->
?FORALL(L, list_no_dupls(integer()),

length(L) =:= length(sort(L))).

Custom generators

• Ok, but the properties we tested were quite weak
• How about ensuring that the list after sorting has

the same elements as the original one?
• We can use some ‘obviously correct’ function as

reference implementation and test equivalence

8> proper:quickcheck(my_sort:prop_equiv_usort()).
.......... 100 dots
OK: Passed 100 tests

prop_equiv_usort() ->
?FORALL(L, list(integer()),

sort(L) =:= lists:usort(L)).

Testing for stronger properties

• Note: PropEr is ideally suited for easily checking equivalence of
two functions and gradually refining or optimizing one of them!

• But why were we testing for lists of integers?
• We do not have to! We can test for general lists!

9> proper:quickcheck(my_sort:prop_equiv_usort()).
.......... 100 dots
OK: Passed 100 tests

prop_equiv_usort() ->
?FORALL(L, list(), sort(L) =:= lists:usort(L)).

Beyond monotypic testing

• How does shrinking work in this case?
• Let’s modify the property to a false one and see

10> proper:quickcheck(my_sort:prop_equiv_sort()).
.............!
Failed: After 14 test(s)
[[[],[<<54,17,42:7>>],4],{},-0.05423250622902363,{},{42,<<0:3>>}]

Shrinking ...(3 time(s))
[{},{}]
false
11> proper:quickcheck(my_sort:prop_equiv_sort()).
...........................!
Failed: After 28 test(s)
[{},{[],6,’f%Co’,{42},.... A REALLY BIG COMPLICATED TERM HERE

CONTAINING TWO EMPTY LISTS
Shrinking(4 time(s))
[[],[]]
false

prop_equiv_sort() ->
?FORALL(L, list(), sort(L) =:= lists:sort(L)).

Shrinking general terms

Unit Testing Property-Based
Testing

Acquire a
valid input

User-provided
inputs

Generated
semi-randomly

from specification

Run the
program Automatic Automatic

Decide if it
passes

User-provided
expected outputs

Partial correctness
property

Testing frameworks

