Threads
Parallel Algorithms
Asynchronous agents
Locks
Concurrent data structures
All you need is X

- Where X is actors, threads, transactional memory, futures...
- Often true, but for a given application, some Xs will be much more suitable than others.
- In Haskell, our approach is to give you lots of different Xs
 - “Embrace diversity (but control side effects)” (Simon Peyton Jones)
Parallel and Concurrent Haskell ecosystem

- Strategies
- Eval monad
- Par monad
- the IO manager
- MVars
- Lightweight threads
- Software Transactional Memory
- Asynchronous exceptions
Parallelism vs. Concurrency

Multiple cores for *performance*

Multiple threads for *modularity of interaction*

Parallel Haskell

Concurrent Haskell
Parallelism vs. Concurrency

- Primary distinguishing feature of Parallel Haskell: **determinism**
 - The program does “the same thing” regardless of how many cores are used to run it.
 - No race conditions or deadlocks
 - Add parallelism without sacrificing correctness
 - Parallelism is used to speed up pure (non-IO monad) Haskell code
Parallelism vs. Concurrency

- Primary distinguishing feature of Concurrent Haskell: threads of control
 - Concurrent programming is done in the IO monad
 - because threads have *effects*
 - effects from multiple threads are interleaved *nondeterministically* at runtime.
 - Concurrent programming allows programs that interact with multiple external agents to be *modular*
 - the interaction with each agent is programmed separately
 - Allows programs to be structured as a collection of interacting agents (actors)
I. Parallel Haskell

- In this part of the course, you will learn how to:
 - Do basic parallelism:
 - compile and run a Haskell program, and measure its performance
 - parallelise a simple Haskell program (a Sudoku solver)
 - use ThreadScope to profile parallel execution
 - do dynamic partitioning
 - measure parallel speedup
 - use Amdahl’s law to calculate possible speedup
 - Work with Evaluation Strategies
 - build simple Strategies
 - parallelise a data-mining problem: K-Means
 - Work with the Par Monad
 - Use the Par monad for expressing dataflow parallelism
 - Parallelise a type-inference engine
Running example: solving Sudoku

- code from the Haskell wiki (brute force search with some intelligent pruning)
- can solve all 49,000 problems in 2 mins
- input: a line of text representing a problem

```
import Sudoku

solve :: String -> Maybe Grid
```

```
......2143......6......2.15........637..........68..4....23........7....
......241..8............3..4..5.7....1......3......51.6...2...5.3..7...
......24....1...........83.7...1.1.8..5.....2.....2.4..6.5...7.3........
```
Solving Sudoku problems

• Sequentially:
 – divide the file into lines
 – call the solver for each line

```haskell
import Sudoku
import Control.Exception
import System.Environment

main :: IO ()
main = do
  [f] <- getArgs
  grids <- fmap lines $ readFile f
  mapM (evaluate . solve) grids

evaluate :: a -> IO a
```
$ ghc -O2 sudoku1.hs -rtsopts
[1 of 2] Compiling Sudoku (Sudoku.hs, Sudoku.o)
[2 of 2] Compiling Main (sudoku1.hs, sudoku1.o)
Linking sudoku1 ... $
Run the program...

```
$ ./sudoku1 sudoku17.1000.txt +RTS -s
  2,392,127,440 bytes allocated in the heap
  36,829,592 bytes copied during GC
   191,168 bytes maximum residency (11 sample(s))
   82,256 bytes maximum slop
    2 MB total memory in use (0 MB lost due to fragmentation)

  Generation 0:  4570 collections,   0 parallel,  0.14s,  0.13s elapsed
  Generation 1:    11 collections,   0 parallel,  0.00s,  0.00s elapsed
...
  INIT  time    0.00s  (  0.00s elapsed)
  MUT   time    2.92s  (  2.92s elapsed)
  GC    time    0.14s  (  0.14s elapsed)
  EXIT  time    0.00s  (  0.00s elapsed)
  Total time    3.06s  (  3.06s elapsed)
...```
Now to parallelise it...

- Doing parallel computation entails specifying coordination in some way – compute A in parallel with B
- This is a constraint on evaluation order
- But by design, Haskell *does not have a specified evaluation order*
- So we need to add something to the language to express constraints on evaluation order
The Eval monad

- Eval is pure
- Just for expressing sequencing between `rpar`/`rseq` – nothing more
- Compositional – larger Eval sequences can be built by composing smaller ones using monad combinators
- Internal workings of Eval are very simple (see Haskell Symposium 2010 paper)

```haskell
import Control.Parallel.Strategies

data Eval a

instance Monad Eval

runEval :: Eval a -> a

rpar :: a -> Eval a
rseq :: a -> Eval a
```
What does rpar *actually do*?

- rpar creates a *spark* by writing an entry in the *spark pool* – rpar is very cheap! (not a thread)
- the spark pool is a circular buffer
- when a processor has nothing to do, it tries to remove an entry from its own spark pool, or steal an entry from another spark pool (*work stealing*)
- when a spark is found, it is evaluated
- The spark pool can be full – watch out for spark overflow!
Basic Eval patterns

• To compute a in parallel with b, and return a pair of the results:

```latex
\begin{align*}
\text{do} & \\
\text{a'} & \leftarrow \text{rpar } a \\
\text{b'} & \leftarrow \text{rseq } b \\
\text{return } (a', b')
\end{align*}
```

• alternatively:

```latex
\begin{align*}
\text{do} & \\
\text{a'} & \leftarrow \text{rpar } a \\
\text{b'} & \leftarrow \text{rseq } b \\
\text{rseq } a' & \text{rseq } a' \\
\text{return } (a', b')
\end{align*}
```

• what is the difference between the two?
Parallelising Sudoku

• Let’s divide the work in two, so we can solve each half in parallel:

```haskell
let (as, bs) = splitAt (length grids `div` 2) grids
```

• Now we need something like

```haskell
runEval $ do
 as' <- rpar (map solve as)
 bs' <- rpar (map solve bs)
 rseq as'
 rseq bs'
 return ()
```
But this won’t work...

- rpar evaluates its argument to Weak Head Normal Form (WHNF)
- WTF is WHNF?
  - evaluates as far as the first constructor
  - e.g. for a list, we get either [] or (x:xs)
  - e.g. WHNF of “map solve (a:as)” would be “solve a : map solve as”
- But we want to evaluate the whole list, and the elements

```haskell
runEval $ do
 as' <- rpar (map solve as)
 bs' <- rpar (map solve bs)
 rseq as'
 rseq bs'
 return ()
```
We need to go deeper

- deep fully evaluates a nested data structure and returns it
  - e.g. a list: the list is fully evaluated, including the elements
- uses overloading: the argument must be an instance of NFData
  - instances for most common types are provided by the library

```haskell
import Control.DeepSeq

deep :: NFData a => a -> a
deep a = deepseq a a
```
Ok, adding deep

runEval $ do
    as' <- rpar (deep (map solve as))
    bs' <- rpar (deep (map solve bs))
    rseq as'
    rseq bs'
    return ()

• Now we just need to evaluate this at the top level in ‘main’:

evaluate $ runEval $ do
    a <- rpar (deep (map solve as))
    ...

• (normally using the result would be enough to force evaluation, but we’re not using the result here)
Let’s try it...

- Compile sudoku2
  - (add -threaded -rtsopts)
  - run with sudoku17.1000.txt +RTS -N2
- Take note of the Elapsed Time
$ ./sudoku2 sudoku17.1000.txt +RTS -N2 -s
2,400,125,664 bytes allocated in the heap
   48,845,008 bytes copied during GC
   2,617,120 bytes maximum residency (7 sample(s))
      313,496 bytes maximum slop
9 MB total memory in use (0 MB lost due to fragmentation)

Generation 0:  2975 collections,  2974 parallel,  1.04s,  0.15s elapsed
Generation 1:     7 collections,     7 parallel,  0.05s,  0.02s elapsed

Parallel GC work balance: 1.52 (6087267 / 3999565, ideal 2)

SPARKS: 2 (1 converted, 0 pruned)

INIT  time    0.00s  (  0.00s elapsed)
MUT   time    2.21s  (  1.80s elapsed)
GC    time    1.08s  (  0.17s elapsed)
EXIT  time    0.00s  (  0.00s elapsed)
Total time    3.29s  (  1.97s elapsed)
Calculating Speedup

• Calculating speedup with 2 processors:
  – Elapsed time (1 proc) / Elapsed Time (2 procs)
  – NB. not CPU time (2 procs) / Elapsed (2 procs)!
  – NB. compare against sequential program, not parallel program running on 1 proc

• Speedup for sudoku2: 3.06/1.97 = 1.55
  – not great...
Why not 2?

• there are two reasons for lack of parallel speedup:
  – less than 100% utilisation (some processors idle for part of the time)
  – extra overhead in the parallel version

• Each of these has many possible causes...
A menu of ways to screw up

- **less than 100% utilisation**
  - parallelism was not created, or was discarded
  - algorithm not fully parallelised – residual sequential computation
  - uneven work loads
  - poor scheduling
  - communication latency

- **extra overhead in the parallel version**
  - overheads from rpar, work-stealing, deep, ...
  - lack of locality, cache effects...
  - larger memory requirements leads to GC overhead
  - GC synchronisation
  - duplicating work
So we need *tools*

- to tell us why the program isn’t performing as well as it could be
- For Parallel Haskell we have ThreadScope

```
$ rm sudoku2; ghc -o2 sudoku2.hs -threaded -rtsopts -eventlog
$./sudoku2 sudoku17.1000.txt +RTS -N2 -1s
$ threadscope sudoku2.eventlog
```

- *eventlog* has very little effect on runtime
  – important for profiling parallelism
Uneven workloads...

- So one of the tasks took longer than the other, leading to less than 100% utilisation

```haskell
let (as, bs) = splitAt (length grids `div` 2) grids
```

- One of these lists contains more work than the other, even though they have the same length
  - sudoku solving is not a constant-time task: it is a searching problem, so depends on how quickly the search finds the solution
Partitioning

- Dividing up the work along fixed pre-defined boundaries, as we did here, is called *static partitioning*
  - static partitioning is simple, but can lead to under-utilisation if the tasks can vary in size
  - static partitioning does not adapt to varying availability of processors – our solution here can use only 2 processors

let (as, bs) = splitAt (length grids `div` 2) grids
Dynamic Partitioning

• Dynamic partitioning involves
  – dividing the work into smaller units
  – assigning work units to processors dynamically at runtime using a scheduler
  – good for irregular problems and varying number of processors

• GHC’s runtime system provides spark pools to track the work units, and a work-stealing scheduler to assign them to processors

• So all we need to do is use smaller tasks and more repars, and we get dynamic partitioning
Revisiting Sudoku...

• So previously we had this:

```haskell
runEval $ do
 a <- rpar (deep (map solve as))
 b <- rpar (deep (map solve bs))
 ...
```

• We want to push `rpar` down into the map
  – each call to `solve` will be a separate spark
A parallel map

parMap :: (a -> b) -> [a] -> Eval [b]
parMap f [] = return []
parMap f (a:as) = do
    b <- rpar (f a)
    bs <- parMap f as
    return (b:bs)

Create a spark to evaluate (f a) for each element a

Return the new list

• Provided by Control.Parallel.Strategies
• Also:  parMap f xs = mapM (rpar . f) xs
Putting it together...

- NB. evaluate $ deep $ to fully evaluate the result list
- Code is simpler than the static partitioning version!
Results

./sudoku3 sudoku17.1000.txt +RTS -s -N2 -ls
2,401,880,544 bytes allocated in the heap
49,256,128 bytes copied during GC
2,144,728 bytes maximum residency (13 sample(s))
198,944 bytes maximum slop
7 MB total memory in use (0 MB lost due to fragmentation)

Generation 0: 2495 collections, 2494 parallel, 1.21s, 0.17s elapsed
Generation 1: 13 collections, 13 parallel, 0.06s, 0.02s elapsed

Parallel GC work balance: 1.64 (6139564 / 3750823, ideal 2)

SPARKS: 1000 (1000 converted, 0 pruned)

INIT time 0.00s ( 0.00s elapsed)
MUT time 2.19s ( 1.55s elapsed)
GC time 1.27s ( 0.19s elapsed)
EXIT time 0.00s ( 0.00s elapsed)
Total time 3.46s ( 1.74s elapsed)

Now 1.7 speedup
5.2 speedup
• Lots of GC
• One core doing all the GC work
  – indicates one core generating lots of data
• Are there any sequential parts of this program?

• `readFile` and `lines` are not parallelised
• Suppose we force the sequential parts to happen first...

```haskell
import Sudoku
import Control.Exception
import System.Environment

main :: IO ()
main = do
 [f] <- getArgs
 grids <- fmap lines $ readFile f
 evaluate (length grids)
 evaluate $ deep $ runEval $ parMap solve grids
```
### Timeline

#### Activity

- Running
- GC
- Create thread
- Run spark
- Thread runnable
- Seq GC req
- Par GC req
- Migrate thread
- Thread wakeup
- Shutdown

#### Events

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>38174000</td>
<td>cap 1: running thread 3</td>
</tr>
<tr>
<td>38196000</td>
<td>cap 0: creating thread 4</td>
</tr>
<tr>
<td>38197000</td>
<td>cap 0: creating spark thread 4</td>
</tr>
<tr>
<td>38197000</td>
<td>cap 0: thread 4 is runnable</td>
</tr>
<tr>
<td>38200000</td>
<td>cap 0: running thread 4</td>
</tr>
<tr>
<td>38211000</td>
<td>cap 0: thread 4 stealing a spark from cap 1</td>
</tr>
</tbody>
</table>
Calculating possible speedup

• When part of the program is sequential, Amdahl’s law tells us what the maximum speedup is.

\[
\frac{1}{(1 - P) + \frac{P}{N}}
\]

• P = parallel portion of runtime
• N = number of processors
Applying Amdahl’s law

• In our case:
  – runtime = 3.06s (NB. sequential runtime!)
  – non-parallel portion = 0.038s (P = 0.9876)
  – N = 2, max speedup = 1 / ((1 – 0.9876) + 0.9876/2)
    • =~ 1.98
    • on 2 processors, maximum speedup is not affected much by this sequential portion
  – N = 64, max speedup = 35.93
    • on 64 processors, 38ms of sequential execution has a dramatic effect on speedup
• diminishing returns...
• See “Amdahl's Law in the Multicore Era”, Mark Hill & Michael R. Marty
• Amdahl’s law paints a bleak picture
  – speedup gets increasingly hard to achieve as we add more cores
  – returns diminish quickly when more cores are added
  – small amounts of sequential execution have a dramatic effect
  – proposed solutions include heterogeneity in the cores
    – likely to create bigger problems for programmers

• See also Gustafson’s law – the situation might not be as bleak as Amdahl’s law suggests:
  – with more processors, you can solve a bigger problem
  – the sequential portion is often fixed or grows slowly with problem size

• Note: in Haskell it is **hard to identify the sequential parts anyway**, due to lazy evaluation
Evaluation Strategies

• So far we have used Eval/rpar/rseq
  – these are quite low-level tools
  – but it’s important to understand how the underlying mechanisms work

• Now, we will raise the level of abstraction

• Goal: encapsulate parallel idioms as re-usable components that can be composed together.
The Strategy type

A Strategy is...

- A function that,
- when applied to a value ‘a’,
- evaluates ‘a’ to some degree
- (possibly sparking evaluation of sub-components of ‘a’ in parallel),
- and returns an equivalent ‘a’ in the Eval monad

NB. the return value should be observably equivalent to the original
- (why not the same? we’ll come back to that...)
Example...

```
parList :: Strategy [a]
```

- A Strategy on lists that sparks each element of the list
- This is usually not sufficient – suppose we want to evaluate the elements fully (e.g. with deep), or do parList on nested lists.
- So we parameterise parList over the Strategy to apply to the elements:

```
parList :: Strategy a -> Strategy [a]
```
Defining parList

```haskell
type Strategy a = a -> Eval a
parList :: Strategy a -> Strategy [a]

• We have the building blocks:
 rpar :: a -> Eval a
 :: Strategy a

parList :: (a -> Eval a) -> [a] -> Eval [a]
parList s [] = return []
parList s (x:xs) = do
 x' <- rpar (runEval (s x))
 xs' <- parList s xs
 return (x':xs')
```
By why *do* Strategies return a value?

- Spark pool points to `(runEval (s x))`
- If nothing else points to this expression, the runtime will discard the spark, on the grounds that it is not required
- *Always keep hold of the return value of* rpar
- (see the notes for more details on this)
Let’s generalise…

• Instead of parList which has the sparking behaviour built-in, start with a basic traversal in the Eval monad:

```haskell
evalList :: (a -> Eval a) -> [a] -> Eval [a]
evalList f [] = return ()
evalList f (x:xs) = do
 x' <- f x
 xs' <- parList f xs
 return (x':xs')
```

• and now:

```haskell
parList f = evalList (rpar `dot` f)
where s1 `dot` s2 = s1 . runEval . s2
```
Generalise further...

• In fact, `evalList` already exists for arbitrary data types in the form of `traverse`.

```haskell
evalTraversable :: Traversable t => Strategy a -> Strategy (t a)
 evalTraversable = traverse
 evalList = evalTraversable
```

• So, building Strategies for arbitrary data structures is easy, given an instance of `Traversable`.

• (not necessary to understand `Traversable` here, just be aware that many Strategies are just generic traversals in the Eval monad).
How do we *use* a Strategy?

- We could just use `runEval`
- But this is better:
  - e.g.
  ```haskell```
  ```
  myList `using` parList `rdeepseq`
  ```
 - Why better? Because we have a “law”:
 - `x `using` s ≈ x`
 - We can insert or delete “`using` s” without changing the semantics of the program
Is that really true?

• Well, not entirely.

1. It relies on Strategies returning “the same value” (\textit{identity-safety})
 – Strategies from the library obey this property
 – Be careful when writing your own Strategies

2. \texttt{x `using` s} might do more evaluation than just \texttt{x}.
 – So the program with \texttt{x `using` s} might be \texttt{_|_}, but the program with just \texttt{x} might have a value

• if identity-safety holds, adding \texttt{using} cannot make the program produce a different result (other than \texttt{_|_})
But we wanted ‘parMap’

- Earlier we used parMap to parallelise Sudoku
- But parMap is a combination of two concepts:
 - The algorithm, ‘map’
 - The parallelism, ‘parList’

```haskell
parMap f x = map f xs `using` parList
```

- With Strategies, the algorithm can be separated from the parallelism.
 - The algorithm produces a (lazy) result
 - A Strategy filters the result, but does not do any computation – it returns the same result.
K-Means

- A data-mining algorithm, to identify clusters in a data set.
K-Means

• We use a heuristic technique (Lloyd’s algorithm), based on iterative refinement.

 1. Input: an initial guess at each cluster location
 2. Assign each data point to the cluster to which it is closest
 3. Find the *centroid* of each cluster (the average of all points)
 4. repeat 2-3 until clusters stabilise

• Making the initial guess:
 1. Input: number of clusters to find
 2. Assign each data point to a random cluster
 3. Find the centroid of each cluster

• Careful: sometimes a cluster ends up with no points!
K-Means: basics

data Vector = Vector Double Double

addVector :: Vector -> Vector -> Vector
addVector (Vector a b) (Vector c d) = Vector (a+c) (b+d)

data Cluster = Cluster
 { clId :: !Int,
 clCount :: !Int,
 clSum :: !Vector,
 clCent :: !Vector
 }

sqDistance :: Vector -> Vector -> Double
-- square of distance between vectors

makeCluster :: Int -> [Vector] -> Cluster
-- builds Cluster from a set of points
K-Means:

assign
:: Int -- number of clusters
-> [Cluster] -- clusters
-> [Vector] -- points
-> Array Int [Vector] -- points assigned to clusters

makeNewClusters :: Array Int [Vector] -> [Cluster]
-- takes result of assign, produces new clusters

step :: Int -> [Cluster] -> [Vector] -> [Cluster]
step nclusters clusters points =
 makeNewClusters (assign nclusters clusters points)
Putting it together.. sequentially

```haskell
kmeans_seq :: Int -> [Vector] -> [Cluster] -> IO [Cluster]
kmeans_seq nclusters points clusters = do
  let
    loop :: Int -> [Cluster] -> IO [Cluster]
    loop n clusters | n > tooMany = return clusters
    loop n clusters = do
      putStrLn stderr "iteration %d\n" n
      putStrLn stderr (unlines (map show clusters))
      let clusters' = step nclusters clusters points
          if clusters' == clusters
            then return clusters
            else loop (n+1) clusters'
  --
  loop 0 clusters
```
Parallelise makeNewClusters?

- essentially a map over the clusters
- number of clusters is small
- not enough parallelism here – grains are too large, fan-out is too small

```
makeNewClusters :: Array Int [Vector] -> [Cluster]
makeNewClusters arr =
  filter ((>0) . clCount) $
    [ makeCluster i ps | (i,ps) <- assocs arr ]
```
How to parallelise?

• Parallelise assign?

assign :: Int -> [Cluster] -> [Vector] -> Array Int [Vector]
assign nclusters clusters points =
 accumArray (flip (:)) [] (0, nclusters-1)
 [(clId (nearest p), p) | p <- points]
where
 nearest p = ...

• essentially map/reduce: map nearest + accumArray
• the map parallelises, but accumArray doesn’t
• could divide into chunks... but is there a better way?
Sub-divide the data

• Suppose we divided the data set in two, and called step on each half

• We need a way to combine the results:

\[
\text{step } n \ cs \ (\text{as } ++ \ bs) = \text{step } n \ cs \ \text{as} \ \text{`combine` step } n \ cs \ bs
\]

• but what is combine?

\[
\text{combine} :: \text{[Cluster]} \to \text{[Cluster]} \to \text{[Cluster]}
\]

• assuming we can match up cluster pairs, we just need a way to combine two clusters
Combining clusters

- A cluster is notionally a set of points
- Its *centroid* is the average of the points
- A Cluster is represented by its centroid:

```haskell
data Cluster = Cluster
  { clId :: !Int,
    clCount :: !Int, -- num of points
    clSum :: !Vector, -- sum of points
    clCent :: !Vector -- clSum / clCount
  }
```

- but note that we cached clCount and clSum
- these let us merge two clusters and recompute the centroid in $O(1)$
Combining clusters

- So using

\[
\text{combineClusters} :: \text{Cluster} \to \text{Cluster} \to \text{Cluster}
\]

- we can define

\[
\text{reduce} :: \text{Int} \to [[[\text{Cluster}]]] \to [\text{Cluster}]
\]

- (see notes for the code; straightforward)
- now we can express K-Means as a map/reduce
Final parallel implementation

```haskell
kmeans_par :: Int -> Int -> [Vector] -> [Cluster] -> IO [Cluster]
kmeans_par chunks nclusters points clusters = do
  let chunks = split chunks points
  let
    loop :: Int -> [Cluster] -> IO [Cluster]
    loop n clusters | n > tooMany = return clusters
    loop n clusters = do
      hPrintf stderr "iteration %d\n" n
      hPutStr stderr (unlines (map show clusters))
      let
        new_clusterss =
          map (step nclusters clusters) chunks
          `using` parList rdeepseq
        clusters' = reduce nclusters new_clusterss
        if clusters' == clusters
          then return clusters
        else loop (n+1) clusters'
      --
    loop 0 clusters
```
What chunk size?

• Divide data by number of processors?
 – No! Static partitioning could lead to poor utilisation (see earlier)
 – there’s no need to have such large chunks, the RTS will schedule smaller work items across the available cores
• Results for 170000 2-D points, 4 clusters, 1000 chunks
Further thoughts

• We had to restructure the algorithm to make the maximum amount of parallelism available
 – map/reduce
 – move the branching point to the top
 – make reduce as cheap as possible
 – a tree of reducers is also possible
• Note that the parallel algorithm is data-local – this makes it particularly suitable for distributed parallelism (indeed K-Means is commonly used as an example of distributed parallelism).
• But be careful of static partitioning
State of play

• yesterday we:
 – looked at the Eval monad, rpar and rseq, and Strategies
 – got confused about laziness

• This morning:
 – short intro to another programming model for parallelism in Haskell, the Par monad
 – Lab session (Parallel Haskell)

• This afternoon:
 – Concurrent Haskell
Strategies, in theory:
- $Algorithm + Strategy = Parallelism$

Strategies, in practice (sometimes):
- $Algorithm + Strategy = No Parallelism$

Lazy evaluation is the magic ingredient that bestows modularity, but lazy evaluation can be tricky to deal with.

The Par monad:
- abandon modularity via lazy evaluation
- get a more direct programming model
- avoid some common pitfalls
- modularity via higher-order skeletons
- a beautiful implementation
A menu of ways to screw up

- less than 100% utilisation
 - parallelism was not created, or was discarded
 - algorithm not fully parallelised – residual sequential computation
 - uneven work loads
 - poor scheduling
 - communication latency

- extra overhead in the parallel version
 - overheads from rpar, work-stealing, deep, ...
 - lack of locality, cache effects...
 - larger memory requirements leads to GC overhead
 - GC synchronisation
 - duplicating work
The **Par** Monad

- **Par** is a monad for parallel computation
- Parallel computations are pure (and hence deterministic)
- Forking is *explicit*
- Results are communicated through **IVars**

```haskell
data Par
instance Monad Par

runPar :: Par a -> a

fork :: Par () -> Par ()

data IVar
new :: Par (IVar a)
get :: IVar a -> Par a
put :: NFData a => IVar a -> a -> Par ()
```
Par expresses dynamic dataflow
Par can express regular parallelism, like parMap. First expand our vocabulary a bit:

```haskell
spawn :: Par a -> Par (IVar a)
spawn p = do r <- new
    fork $ p >>= put r
    return r
```

Examples

```haskell
parMapM :: NFData b => (a -> Par b) -> [a] -> Par [b]
parMapM f as = do
    ibs <- mapM (spawn . f) as
    mapM get ibs
```
• Divide and conquer parallelism:

```haskell
parfib :: Int -> Int -> Par Int
parfib n
  | n <= 2    = return 1
  | otherwise = do
      x <- spawn $ parfib (n-1)
      y <- spawn $ parfib (n-2)
      x' <- get x
      y' <- get y
      return (x' + y')
```

• In practice you want to use the sequential version when the grain size gets too small
How did we avoid laziness?

• put is hyperstrict.
• (by default)
• there’s also a WHNF version called put_
Dataflow problems

• Par really shines when the problem is easily expressed as a dataflow graph, particularly an irregular or dynamic graph (e.g. shape depends on the program input)

• Identify the nodes and edges of the graph
 – each node is created by fork
 – each edge is an IVar
Example

- Consider typechecking (or inferring types for) a set of non-recursive bindings.
- Each binding is of the form $x = e$ for variable x, expression e
- To typecheck a binding:
 - input: the types of the identifiers mentioned in e
 - output: the type of x
- So this is a dataflow graph
 - a node represents the typechecking of a binding
 - the types of identifiers flow down the edges
Example

\[
\begin{align*}
f & = \ldots \\
g & = \ldots \ f \ldots \\
h & = \ldots \ f \ldots \\
j & = \ldots \ g \ldots \ h \ldots
\end{align*}
\]
Implementation

• We parallelised an existing type checker (nofib/infer).

• Algorithm works on a single term:

```haskell
data Term = Let VarId Term Term | ...
```

• So we parallelise checking of the top-level Let bindings.
The parallel type inferencer

Given:

\[
\text{inferTopRhs} :: \text{Env} \rightarrow \text{Term} \rightarrow \text{PolyType}
\]

\[
\text{makeEnv} :: [(\text{VarId},\text{Type})] \rightarrow \text{Env}
\]

We need a type environment:

\[
\text{type TopEnv} = \text{Map VarId (IVar PolyType)}
\]

The top-level inferencer has the following type:

\[
\text{inferTop} :: \text{TopEnv} \rightarrow \text{Term} \rightarrow \text{Par MonoType}
\]
Parallel type inference

inferTop :: TopEnv -> Term -> Par MonoType
inferTop topenv (Let x u v) = do
 vu <- new

 fork $ do
 let fu = Set.toList (freeVars u)
 tfu <- mapM (get . fromJust . flip Map.lookup topenv) fu
 let aa = makeEnv (zip fu tfu)
 put vu (inferTopRhs aa u)

 inferTop (Map.insert x vu topenv) v

inferTop topenv t = do
 -- the boring case: invoke the normal sequential
 -- type inference engine
Results

- N1: 1.12s
- N2: 0.60s (1.87x speedup)

available parallelism depends on the input: these bindings only have two branches
Thoughts to take away...

- **Parallelism is not the goal**
 - Making your program faster is the goal
 - (unlike Concurrency, which is a goal in itself)
 - If you can make your program fast enough without parallelism, all well and good
 - However, designing your code with parallelism in mind should ensure that it can ride Moore’s law a bit longer
 - maps and trees, not folds
Lab

- **Download the sample code here:**

 ![Download link]

- **or get it with git:**

 ![Git clone command]

- **code is in par-tutorial/code**

- **lab exercises are here:**

 ![Lab exercises link]

- **install extra packages:**

 ![Install packages command]
Open research problems?

• How to do safe nondeterminism

• Par monad:
 – implement and compare scheduling algorithms
 – better raw performance (integrate more deeply with the RTS)

• Strategies:
 – ways to ensure identity safety
 – generic clustering