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How are Languages Implemented?

• Two major strategies:
– Interpreters (older, less studied)
– Compilers (newer, much more studied)

• Interpreters run programs “as is”
– Little or no preprocessing

• Compilers do extensive preprocessing



Language Implementations

• Today, batch compilation systems dominate
– gcc, clang, ...

• Some languages are primarily interpreted
– Java bytecode compiler (javac)
– Scripting languages (perl, python, javascript, ...)

• Some languages (e.g. Lisp) provide both
– Interpreter for development
– Compiler for production



(Short) History of High-Level Languages

• 1953 IBM develops the 701 

• Till then, all programming is done in assembly

• Problem: Software costs exceeded hardware 
costs!

• John Backus: “Speedcoding”
– An interpreter
– Ran 10-20 times slower than                               

hand-written assembly



FORTRAN I

• 1954 IBM develops the 704
• John Backus

– Idea: translate high-level code to assembly
– Many thought this impossible

• Had already failed in other projects

• 1954-7 FORTRAN I project
• By 1958, >50% of all software is in FORTRAN
• Cut development time dramatically 

– (2 weeks → 2 hours)



FORTRAN I

• The first compiler
– Produced code almost as good as hand-written
– Huge impact on computer science

• Led to an enormous body of theoretical work

• Modern compilers preserve the outlines of the 
FORTRAN I compiler



The Structure of a Compiler

1. Lexical Analysis

2. Syntax Analysis

3. Semantic Analysis

4. IR Optimization

5. Code Generation

6. Low-level Optimization

   The first 3 phases can be understood by analogy 
to how humans comprehend natural languages 

(e.g., English, Greek, etc.).



First Step: Lexical Analysis

• Recognize words
– Smallest unit above letters

This is a sentence.

• Note the
– Capital "T" (start of sentence symbol)
– Blank " " (word separator)
– Period "." (end of sentence symbol)



More Lexical Analysis

• Lexical analysis is not trivial.  Consider:

ist his ase nte nce

• Plus, programming languages are typically more 
cryptic than English:

*p->f ++ = -.12345e-5



And More Lexical Analysis

• Lexical analyzer divides program text into “words” 
or “tokens”

if (x == y) then z = 1; else z = 2;

• Units: 

if, (, x, ==, y, ), then, z, =, 1, ;, else, z, =, 2, ;



Second Step: Syntax Analysis (Parsing)

• Once words are identified, the next step is to 
understand the sentence structure

• Parsing = Diagramming Sentences
– The diagram is a tree



Diagramming a Sentence (1)

This line is a longer sentence

noun phrase

noun phrase

sentence

verbarticle noun article adjective noun

verb phrase



Diagramming a Sentence (2)

This line is a longer sentence

verbarticle noun article adjective noun

subject object

sentence



Parsing Programs

• Parsing program expressions is the same
• Consider:

if (x == y) then z = 1; else z = 2;
• Diagrammed:

if-then-else

x y z 1 z 2==

assignmentrelation assignment

predicate else-stmtthen-stmt

= =



Third Step: Semantic Analysis

• Once the sentence structure is understood, we can 
try to understand its “meaning”
– But, sometimes, “meaning” is too hard for compilers

• Most compilers perform limited analysis to catch 
inconsistencies

• Some optimizing compilers do more analysis to 
improve the performance of the program



Semantic Analysis in English

• Example:

Jack said Jerry left his assignment at home.

What does “his” refer to? Jack or Jerry?

• Even worse:

Jack said Jack left his assignment at home.

How many Jacks are there?

Which one left the assignment?



Semantic Analysis in Programming Languages

• Programming languages 
define strict rules to avoid 
such ambiguities

• This C++ code prints 42; the 
inner definition is used

{
int Jack = 17;
{
int Jack = 42;
cout << Jack;

}
}



More Semantic Analysis

• Compilers perform many semantic checks 
besides variable bindings

• Example:

Arnold left her homework at home.

• A “type mismatch” between her and Arnold; we 
know they are different people
(Presumably Arnold is male...)



Optimization

• No strong counterpart in English, but akin to 
editing

• Automatically modify programs so that they
– Run faster

– avoid some source code redundancy
– exploit the underlying hardware more effectively

– Use less memory/cache/power
– In general, conserve some resource more 

economically



Optimization Example

X = Y * 0  is the same as  X = 0

NO!

Valid for integers, but not for floating point numbers



Code Generation

• Produces assembly code (usually)

• A translation into another language
– Analogous to human translation



Intermediate Languages

• Many compilers perform translations between 
successive intermediate forms
– All but first and last are intermediate languages 

internal to the compiler
– Typically there is one IL

• Intermediate languages generally ordered in 
descending level of abstraction
– Highest is source
– Lowest is assembly



Intermediate Languages (Cont.)

• IL’s are useful because lower levels expose 
features hidden by higher levels
– registers
– memory/frame layout
– etc.

• But lower levels obscure high-level meaning



Issues

• Compiling is almost this simple, but there are 
many pitfalls

• Example: How are erroneous programs handled?

• Language design has big impact on compiler
– Determines what is easy and hard to compile
– Course theme: many trade-offs in language design



Compilers Today

• The overall structure of almost every compiler 
adheres to our outline

• The proportions have changed since FORTRAN
– Early:

• lexical analysis, parsing most complex, expensive

– Today:
• lexical analysis and parsing are well-understood and cheap
• semantic analysis and optimization dominate
• focus on concurrency/parallelism and interactions with the 

memory model of the underlying platform
• optimization for code size and energy consumption



Current Trends in Compilation

• Compilation for speed is less interesting. However, 
there are exceptions:
– scientific programs
– advanced processors (Digital Signal Processors, advanced 

speculative architectures, GPUs)

• Ideas from compilation used for improving code 
reliability:
– memory safety
– detecting data races
– security properties
– ... 



Programming Language Economics

• Programming languages are designed to fill a void
– enable a previously difficult/impossible application
– orthogonal to language design quality (almost)

• Programming training is the dominant cost
– Languages with a big user base are replaced rarely
– Popular languages become ossified
– But it is easy to start in a new niche...



Why So Many Programming Languages?

• Application domains have distinctive (and 
sometimes conflicting) needs

• Examples:
– Scientific computing: High performance
– Business: report generation
– Artificial intelligence: symbolic computation
– Systems programming: efficient low-level access
– Web programming: scripts that run everywhere 
– Multicores: concurrency and parallelism
– Other special purpose languages...



Topic: Language Design

• No universally accepted metrics for design

• “A good language is one people use”

• NO !
– Is COBOL the best language?

• Good language design is hard



Language Evaluation Criteria

Charact erist ic                   Crit eria

Readabilit y W rit eabilit y Reliabilit y

S implicit y    YES    YES     YES

Dat a t ypes     YES    YES     YES

Synt ax design     YES    YES     YES

Abst ract ion    YES     YES

Expressiv it y    YES     YES

T ype checking     YES

Except ions     YES



History of Ideas: Abstraction

• Abstraction = detached from concrete details
• Necessary for building software systems
• Modes of abstraction:

– Via languages/compilers
• higher-level code; few machine dependencies

– Via subroutines
• abstract interface to behavior

– Via modules
• export interfaces which hide implementation

– Via abstract data types
• bundle data with its operations



History of Ideas: Types

• Originally, languages had only few types
– FORTRAN: scalars, arrays
– LISP: no static type distinctions

• Realization: types help
– provide code documentation
– allow the programmer to express abstraction
– allow the compiler to check among many frequent errors 

and sometimes guarantee various forms of safety

• More recently:
– experiments with various forms of parameterization
– best developed in functional languages



History of Ideas: Reuse

• Exploits common patterns in software 
development

• Goal: mass produced software components
• Reuse is difficult
• Two popular approaches (combined in C++)

– Type parameterization (List(Int) & List(Double))
– Class and inheritance: C++ derived classes

• Inheritance allows:
– specialization of existing abstractions
– extension, modification and information hiding



Current Trends

• Language design
– Many new special-purpose languages
– Popular languages to stay

• Compilers
– More needed and more complex
– Driven by increasing gap between

• new languages
• new architectures

– Venerable and healthy area



Why Study Compilers?

• Increase your knowledge of common 
programming constructs and their properties

• Improve your understanding of program 
execution

• Increase your ability to learn new languages

• Learn how languages are implemented
• Learn new (programming) techniques
• See many basic CS concepts at work
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