METUYAWTTIOTEC
(Eapivo 2026)

Eicaywyn ot1o ZXedI0ou0 Kol otV YAoTtoinon
TwV MNwoowv NMpoypoppaTICHOoU

How are Languages Implemented?

- Two major strategies:
— Interpreters (older, less studied)
— Compilers (newer, much more studied)

+ Interpreters run programs “as is”
— Little or no preprocessing

« Compilers do extensive preprocessing

Language Implementations

- Today, batch compilation systems dominate
— gcg, clang, ..

- Some languages are primarily interpreted
— Java byftecode compiler (javac)
— Scripting languages (perl, python, javascript, ..)

- Some languages (e.g. Lisp) provide both
— Interpreter for development
— Compiler for production

(Short) History of High-Level Languages

- 1953 IBM develops the 701
- Till then, all programming is done in assembly

- Problem: Software costs exceeded hardware
costs!

- John Backus: “Speedcoding”
— An interpreter

— Ran 10-20 times slower than
hand-written assembly

FORTRAN I

- 1954 IBM develops the 704

- John Backus
— Idea: translate high-level code o assembly
— Many thought this impossible

- Had already failed in other projects

+ 1954-7 FORTRAN I project
- By 1958, >50% of all software is in FORTRAN

+ Cut development tfime dramatically
— (2 weeks = 2 hours)

FORTRAN I

+ The first compiler
— Produced code almost as good as hand-written
— Huge impact on computer science

+ Led to an enormous body of theoretical work

- Modern compilers preserve the outlines of the
FORTRAN I compiler

The Structure of a Compiler

o0 s wN e

Lexical Analysis :>
Syntax Analysis .
Semantic Analysis

IR Optimization

Code Generation

Low-level Optimization

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

= Machine
Code

The first 3 phases can be understood by analogy
o how humans comprehend natural languages
(e.g., English, Greek, etc.).

First Step: Lexical Analysis

Recognize words
— Smallest unit above lefters

This is a sentence.

Note the

— Capital "T" (start of sentence symbol)
— Blank " " (word separator)
— Period "" (end of sentence symbol)

More Lexical Analysis

 Lexical analysis is not frivial. Consider:
ISt his ase nte nce

- Plus, programming languages are typically more
cryptic than English:

*n->F ++ = -.12345e-5

And More Lexical Analysis

Lexical analyzer divides program text into “words”
or “fokens”

if (x == y) then z

1; else z = 2;

« Units:
if, (x, ==V,) then, z, =1, ; else, z, =, 2, ;

Second Step: Syntax Analysis (Parsing)

« Once words are identified, tThe next step is to
understand the sentence structure

- Parsing = Diagramming Sentences
— The diagram is a free

Diagramming a Sentence (1)

This Iine is a Ionger entence

artlcle noun verb artlcle adJectlve noun

noun phrase

noun phrase verb phrase

sentence

Diagramming a Sentence (2)

This line IS a longer sentence

R

article noun verb article adjective noun

V4 —~\

subject object

sentence

Parsing Programs

+ Parsing program expressions is the same

- Consider:
if (x == y) then z = 1; else z = 2;

- Diagrammed:

X ==Yy z = z = 2
relation assignTent assignment
\ |
predicate then-stmt else-stmt

s PR EeER
if-then-else

Third Step: Semantic Analysis

Once the sentence structure is understood, we can
try to understand its "meaning”

- But, sometimes, "meaning” is too hard for compilers

« Most compilers perform limited analysis to catch
Inconsistencies

« Some optimizing compilers do more analysis to
Improve the performance of the program

Semantic Analysis in English

- Example:
Jack said Jerry left his assignment at home.
What does "his” refer to? Jack or Jerry?

- Even worse:
Jack said Jack left his assignment at home.
How many Jacks are there?
Which one left the assignment?

Semantic Analysis in Programming Languages

- Programming languages
define strict rules to avoid
such ambiguities

{

. This C++ code prints 42; the ~ int Jack = 17;

inner definition is used {
int Jack = 42;

cout << Jack;

}
}

More Semantic Analysis

+ Compilers perform many semantic checks
besides variable bindings

- Example:
Arnold left her homework at home.

+ A "type mismatch” between her and Arnold; we
Know they are different people

(Presumably Arnold is male...)

Optimization

- No sfrong counterpart in English, but akin fto
editing
- Automatically modify programs so that they

— Run faster
— avoid some source code redundancy
— exploit the underlying hardware more effectively

— Use less memory/cache/power

— In general, conserve some resource more
economically

Optimization Example

X =Y * 0 isthesameas X = 0

NO!

Valid for integers, but not for floating point numbers

Code Generation

Produces assembly code (usually)

- A franslation info another language
— Analogous o human translation

Intermediate Languages

« Many compilers perform translations between
successive infermediate forms

— All but first and last are infermediate languages
internal to the compiler

— Typically there is one IL

+ Intermediate languages generally ordered in
descending level of abstraction

— Highest is source
— Lowest is assembly

Intermediate Languages (Cont.)

- IL's are useful because lower levels expose
features hidden by higher levels

— registers
- memory/frame layout
— efc.

Butf lower levels obscure high-level meaning

Issues

Compiling is almost this simple, but there are
many pitfalls

Example: How are erroneous programs handled?

- Language design has big impact on compiler
— Determines what is easy and hard to compile
— Course theme: many frade-offs in language design

Compilers Today

+ The overall structure of almost every compiler
adheres to our oufline

- The proportions have changed since FORTRAN
— Early:

- lexical analysis, parsing most complex, expensive

— Today:
- lexical analysis and parsing are well-understood and cheap
- semantic analysis and optimization dominate

« focus on concurrency/parallelism and interactions with the
memory model of the underlying platform

« optimization for code size and energy consumption

Current Trends in Compilation

- Compilation for speed is less interesting. However,
There are exceptions:

— scientific programs

— advanced processors (Digital Signal Processors, advanced
speculative architectures, GPUs)

+ Ideas from compilation used for improving code
reliability:
— memory safety
— detecting data races
— security properties

Programming Language Economics

Programming languages are designed to fill a void
— enable a previously difficult/impossible application
- orthogonal to language design quality (almost)

- Programming fraining is the dominant cost
— Languages with a big user base are replaced rarely
— Popular languages become ossified
— But it is easy to start in a new niche...

Why So Many Programming Languages?

- Application domains have distinctive (and
sometimes conflicting) needs

- Examples:
— Scientific computing: High performance
— Business: report generation
— Artificial intelligence: symbolic computation
— Systems programming: efficient low-level access
— Web programming: scripts that run everywhere
— Multicores: concurrency and parallelism
— Ofher special purpose languages..

Topic: Language Design

- No universally accepted metrics for design

- "A good language is one people use’

- NO |
— Is COBOL the best language?

- Good language design is hard

Language Evaluation Criteria

Characteristic Criteria

Readability W riteability Reliability

Simplicity YES YES YES
Data types YES YES YES
Syntax design YES YES YES
Abstraction YES YES
Expressivity YES YES
Type checking YES

Exceptions YES

History of Ideas: Abstraction

- Abstraction = detached from concrete details
+ Necessary for building soffware systems

- Modes of abstraction:
— Via languages/compilers

- higher-level code; few machine dependencies

— Via subroutines
- abstract interface to behavior

— Via modules
- export interfaces which hide implementation

— Via abstract data types

- bundle data with its operations

History of Ideas: Types

+ Originally, languages had only few types
— FORTRAN: scalars, arrays
— LISP: no static type distinctions

 Realization: types help
— provide code documentation
— allow the programmer fo express abstraction
— allow the compiler fo check among many frequent errors
and sometimes guarantee various forms of safety
- More recently:
— experiments with various forms of parameterization
— best developed in functional languages

History of Ideas: Reuse

- Exploits common patterns in software
development

« Goal: mass produced software components
+ Reuse is difficult

- Two popular approaches (combined in C++)
- Type parameterization (List(Int) & List(Double))
— Class and inheritance: C++ derived classes

+ Inheritance allows:
— specialization of existing absfractions
— extension, modification and information hiding

Current Trends

- Language design
— Many new special-purpose languages
— Popular languages to stay

- Compilers
— More needed and more complex

— Driven by increasing gap between
* hew languages
* new architectures

— Venerable and healthy area

Why Study Compilers?

+ Increase your knowledge of common
programming constructs and their properties

- Improve your understanding of program
execution

+ Increase your ability fo learn new languages

« See many basic CS concepts at work

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

