
Code Generation
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The Main Idea of Today’s Lecture

We can emit stack-machine-style code for 
expressions via recursion

(We will use MIPS assembly as our target language)
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Lecture Outline

•
 

What are stack machines?
•

 
The MIPS assembly language

•
 

A simple source language (“Mini Bar”)
•

 
A stack machine implementation of the simple 
language
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Stack Machines

•
 

A simple evaluation model
•

 
No variables or registers

•
 

A stack of values for intermediate results
•

 
Each instruction:
–

 
Takes its operands from the top of the stack 

–
 

Removes those operands from the stack
–

 
Computes the required operation on them

–
 

Pushes the result onto the stack
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Example of Stack Machine Operation

The addition operation on a stack machine

5

7

9
…

pop

⊕

add

12
9
…

push

5
7
9
…
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Example of a Stack Machine Program

•
 

Consider two instructions
–

 
push i

 
-

 
place the integer i

 
on top of the stack

–
 

add
 

-
 

pop topmost two elements, add them 
and put the result back onto the stack

•
 

A program to compute 7 + 5:
push 7

push 5
add
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Why Use a Stack Machine?

•
 

Each operation takes operands from the same 
place and puts results in the same place

•
 

This means a uniform compilation scheme

•
 

And therefore a simpler compiler
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Why Use a Stack Machine?

•
 

Location of the operands is implicit
–

 
Always on the top of the stack

•
 

No need to specify operands explicitly
•

 
No need to specify the location of the result

•
 

Instruction is “add”
 

as opposed to “add r1

 

, r2

 

”
 (or “add rd

 

ri1

 

ri2

 

”)
⇒ Smaller encoding of instructions
⇒ More compact programs

•
 

This is one of the reasons why Java Bytecode
 uses a stack evaluation model
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Optimizing the Stack Machine

•
 

The add
 

instruction does 3 memory operations
–

 
Two reads and one write to the stack

–
 

The top of the stack is frequently accessed
•

 
Idea: keep the top of the stack in a dedicated 
register (called the “accumulator”)
–

 
Register accesses are faster (why?)

•
 

The “add”
 

instruction is now
acc ← acc + top_of_stack

–
 

Only one memory operation!
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Stack Machine with Accumulator

Invariants
•

 
The result of computing an expression is 
always placed in the accumulator

•
 

For an operation op(e1
 

,…,en
 

)
 

compute each ei
 and then push the accumulator (= the result of 

evaluating ei
 

) onto the stack
•

 
After the operation pop n-1 values

•
 

After computing an expression the stack is as 
before
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Stack Machine with Accumulator: Example

Compute 7 + 5
 

using an accumulator

…

acc

stack

5

7
…

acc ← 5

12

…

⊕

acc ← acc + top_of_stack
pop

…

7

acc ← 7
push acc

7
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A Bigger Example: 3 + (7 + 5)

Code                                Acc        Stack

acc ← 3                                  3               <init>
push

 
acc                                 3               3, <init>

acc ← 7                                  7               3, <init>
push

 
acc                                 7               7, 3, <init>

acc ← 5                                  5               7, 3, <init>
acc ← acc + top_of_stack     12              7, 3, <init>
pop

 
12              3, <init>

acc ← acc + top_of_stack     15              3, <init>
pop

 
15              <init>
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Notes

•
 

It is very important that the stack is 
preserved across the evaluation of a 
subexpression
–

 
Stack before the evaluation of 7 + 5

 
is  3, <init>

–
 

Stack after the evaluation of 7 + 5
 

is  3, <init>
–

 
The first operand is on top of the stack
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From Stack Machines to MIPS

•
 

The compiler generates code for a stack 
machine with accumulator

•
 

We want to run the resulting code on the 
MIPS processor (or simulator)

•
 

We simulate the stack machine instructions 
using MIPS instructions and registers
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Simulating a Stack Machine on the MIPS…

•
 

The accumulator is kept in MIPS register $a0
•

 
The stack is kept in memory

•
 

The stack grows towards lower addresses
–

 
Standard convention on the MIPS architecture

•
 

The address of the next location on the stack  
is kept in MIPS register $sp
–

 
Guess: what does “sp”

 
stand for? 

–
 

The top of the stack is at address $sp + 4
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MIPS Assembly

MIPS architecture
–

 
Prototypical Reduced Instruction Set Computer 
(RISC) architecture

–
 

Arithmetic operations use registers for operands 
and results

–
 

Must use load
 

and store
 

instructions to use 
operands and store results in memory

–
 

32 general purpose registers (32 bits each)
•

 
We will use $sp, $a0

 
and $t1

 
(a temporary register)

Read the SPIM documentation for more details
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A Sample of MIPS Instructions

–
 

lw
 

reg1

 

offset(reg2

 

)
 

“load word”
•

 
Load 32-bit word from address reg2

 

+ offset
 

into reg1

–
 

add
 

reg1

 

reg2

 

reg3

•
 

reg1

 

←
 

reg2

 

+ reg3

–
 

sw
 

reg1

 

offset(reg2

 

)
 

“store word”
•

 
Store 32-bit word in reg1

 

at address reg2

 

+ offset

–
 

addiu
 

reg1

 

reg2

 

imm
 

“add immediate”
•

 
reg1

 

←
 

reg2

 

+ imm

•
 

“u”
 

means overflow is not checked
–

 
li reg imm

 
“load immediate”

•
 

reg
 

←
 

imm
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MIPS Assembly: Example

•
 

The stack-machine code for 7 + 5
 

in MIPS:

acc ← 7
push

 
acc

acc ← 5
acc ← acc + top_of_stack

pop

li $a0 7

sw $a0 0($sp)

addiu $sp $sp -4

li $a0 5

lw $t1 4($sp)

add $a0 $a0 $t1
addiu $sp $sp 4

•
 

We now generalize this to a simple language…
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A Small Language

•
 

A language with only integers and integer 
operations (“Mini Bar”)

P →
 

F P | F
F →

 
id(ARGS) begin E end

ARGS →
 

id, ARGS | id
E →

 
int

 
| id | if E1

 

= E2
 

then E3
 

else E4
| E1

 

+ E2
 

| E1
 

– E2
 

| id(ES)
ES →

 
E, ES | E
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A Small Language (Cont.)

•
 

The first function definition f
 

is the “main”
 routine

•
 

Running the program on input i
 

means 
computing f(i)

•
 

Program for computing the Fibonacci numbers:
fib(x)
begin

if x = 1 then 0 else 
if x = 2 then 1 else fib(x - 1) + fib(x – 2)

end
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Code Generation Strategy

•
 

For each expression e
 

we generate MIPS code 
that:
–

 
Computes the value of e

 
in $a0

–
 

Preserves $sp
 

and the contents of the stack

•
 

We define a code generation function cgen(e)
 whose result is the

 
code generated for

 
e

–
 

cgen(e)
 

will be recursive
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Code Generation for Constants

•
 

The code to evaluate an integer constant 
simply copies it into the accumulator:

cgen(int) = li $a0
 

int

•
 

Note that this also preserves the stack, as 
required
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Code Generation for Addition

cgen(e1
 

+ e2
 

) = 
cgen(e1

 

)
 

; $a0 ← value of e1

sw
 

$a0 0($sp)
 
; push that value

addiu
 

$sp $sp –4
 

; onto the stack
cgen(e2

 

)
 

; $a0 ← value of e2

lw
 

$t1 4($sp)
 
; grab value of e1

add $a0 $t1 $a0
 

; do the addition
addiu

 
$sp $sp 4

 
; pop the stack

Possible optimization:
Put the result of e1

 

directly in register $t1?
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Code Generation for Addition: Wrong Attempt!

Optimization: Put the result of e1
 

directly in $t1?

cgen(e1
 

+ e2
 

) = 
cgen(e1

 

)
 

; $a0 ← value of e1

move $t1 $a0
 
; save that value in $t1

cgen(e2
 

)
 

; $a0 ← value of e2

; may clobber $t1
add $a0 $t1 $a0

 
; perform the addition

Try to generate code for : 3 + (7 + 5)
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Code Generation Notes

•
 

The code for e1
 

+ e2
 

is a template with “holes”
 for code for evaluating e1

 

and e2
•

 
Stack machine code generation is recursive

•
 

Code for e1
 

+ e2
 

consists of code for e1
 

and e2
 glued together

•
 

Code generation can be written as a recursive-
 descent of the AST

–
 

At least for (arithmetic) expressions
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Code Generation for Subtraction and Constants

New instruction: sub reg1

 

reg2 reg3

Implements
 

reg1

 

←
 

reg2

 

- reg3

cgen(e1
 

- e2
 

) = 
cgen(e1

 

)
 

; $a0 ← value of e1

sw
 

$a0 0($sp)
 

; push that value
addiu

 
$sp $sp –4

 
; onto the stack

cgen(e2
 

)
 

; $a0 ← value of e2

lw
 

$t1 4($sp)
 

; grab value of e1

sub $a0 $t1 $a0
 
; do the subtraction

addiu
 

$sp $sp 4
 
; pop the stack



27

Code Generation for Conditional

•
 

We need flow control instructions

•
 

New MIPS instruction: beq
 

reg1

 

reg2

 

label
–

 
Branch to label

 
if reg1

 

= reg2

•
 

New MIPS instruction: j label
–

 
Unconditional jump to label
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Code Generation for If (Cont.)

cgen(if e1
 

= e2
 

then e3 else e4
 

) = 
cgen(e1

 

) 
sw $a0 0($sp)

addiu $sp $sp -4

cgen(e2
 

)
lw $t1 4($sp)

addiu $sp $sp 4

beq $a0 $t1 true_branch

false_branch:
cgen(e4

 

)
j end_if

true_branch:
cgen(e3

 

)
end_if:
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Meet The Activation Record

•
 

Code for function calls and function 
definitions depends on the layout of the 
activation record (or “AR”)

•
 

A very simple AR suffices for this language:
–

 
The result is always in the accumulator

•
 

No need to store the result in the AR
–

 
The activation record holds actual parameters

•
 

For f(x1

 

,…,xn

 

)
 

push the arguments xn

 

,…,x1

 

onto the stack
•

 
These are the only variables in this language
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Meet The Activation Record (Cont.)

•
 

The stack discipline guarantees that on 
function exit, $sp

 
is the same as it was before 

the args
 

got pushed (i.e., before function call)
•

 
We need the return address

•
 

It’s also handy to have a pointer to the 
current activation
–

 
This pointer lives in register $fp

 
(frame pointer)

–
 

Reason for frame pointer will be clear shortly       
(at least I hope!)
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Layout of the Activation Record

Summary:
 

For this language, an AR with the 
caller’s frame pointer, the actual parameters, 
and the return address suffices

Picture:
 

Consider a call to f(x,y), the AR will be:

y
x

old fp

SP

FP

AR of f
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Code Generation for Function Call

•
 

The calling sequence is the sequence of 
instructions (of both caller and callee) to set 
up a function invocation

•
 

New instruction: jal
 

label
–

 
Jump to label, save address of next instruction in 
special register $ra

–
 

On other architectures the return address is 
stored on the stack by the “call”

 
instruction
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Code Generation for Function Call (Cont.)

cgen(f(e1
 

,…,en
 

)) = 
sw $fp 0($sp)
addiu $sp $sp -4
cgen(en

 

)
sw $a0 0($sp)
addiu $sp $sp -4
…
cgen(e1

 

)
sw $a0 0($sp)
addiu $sp $sp -4
jal f_entry

•
 

The caller saves the value 
of the frame pointer

•
 

Then it pushes the actual 
parameters in reverse 
order

•
 

The caller’s jal
 

puts the 
return address in register 
$ra

•
 

The AR so far is 4*n+4
 bytes long
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Code Generation for Function Definition

•
 

New MIPS instruction: jr
 

reg
–

 
Jump to address in register

 
reg

cgen(f(x1
 

,…,xn
 

) begin e end) = 
f_entry:
move $fp $sp
sw $ra 0($sp)
addiu $sp $sp -4
cgen(e)
lw $ra 4($sp)
addiu $sp $sp frame_size
lw $fp 0($sp)
jr $ra

•
 

Note: The frame pointer 
points to the top, not 
bottom of the frame

•
 

Callee saves old return 
address, evaluates its 
body, pops the return 
address, pops the 
arguments, and then 
restores $fp

•
 

frame_size
 

= 4*n + 8 
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Calling Sequence: Example for f(x,y)

Before call           On entry         After body     After call

SP

FP1

y
x

FP1

SP

FP1

SP

FP1

SP
return

y
x

FP1

FP2
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Code Generation for Variables/Parameters

•
 

Variable references are the last construct
•

 
The “variables”

 
of a function are just its 

parameters
–

 
They are all in the AR

–
 

Pushed by the caller

•
 

Problem: Because the stack grows when 
intermediate results are saved, the variables 
are not at a fixed offset from $sp
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Code Generation for Variables/Parameters

•
 

Solution: use the frame pointer
–

 
Always points to the return address on the stack

–
 

Since it does not move, it can be used to find the 
variables

•
 

Let xi
 

be the ith
 

(i = 1,…,n) formal parameter of 
the function for which code is being 
generated

cgen(xi
 

) = lw $a0
 

offset($fp)
 

( offset = 4*i
 

)
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Code Generation for Variables/Parameters

•
 

Example: For a function
 

f(x,y) begin e end
 the activation and frame pointer are set up as 

follows (when evaluating e):

y
x

return

old fp
•

 
x

 
is at fp

 
+ 4

•
 

y
 

is at fp
 

+ 8
FP

SP
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Activation Record & Code Generation Summary

•
 

The activation record must be designed 
together with the code generator 

•
 

Code generation can be done by recursive 
traversal of the AST
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Discussion

•
 

Production compilers do different things
–

 
Emphasis is on keeping values (esp. current stack 
frame) in registers

–
 

Intermediate results are laid out in the AR, not 
pushed and popped from the stack

–
 

As a result, code generation is often performed in 
synergy with register allocation

Next time: code generation for temporaries and 
a deeper look into parameter passing 
mechanisms
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