
Code Generation



2

The Main Idea of Today’s Lecture

We can emit stack-machine-style code for 
expressions via recursion

(We will use MIPS assembly as our target language)



3

Lecture Outline

•
 

What are stack machines?
•

 
The MIPS assembly language

•
 

A simple source language (“Mini Bar”)
•

 
A stack machine implementation of the simple 
language



4

Stack Machines

•
 

A simple evaluation model
•

 
No variables or registers

•
 

A stack of values for intermediate results
•

 
Each instruction:
–

 
Takes its operands from the top of the stack 

–
 

Removes those operands from the stack
–

 
Computes the required operation on them

–
 

Pushes the result onto the stack



5

Example of Stack Machine Operation

The addition operation on a stack machine

5

7

9
…

pop

⊕

add

12
9
…

push

5
7
9
…



6

Example of a Stack Machine Program

•
 

Consider two instructions
–

 
push i

 
-

 
place the integer i

 
on top of the stack

–
 

add
 

-
 

pop topmost two elements, add them 
and put the result back onto the stack

•
 

A program to compute 7 + 5:
push 7

push 5
add



7

Why Use a Stack Machine?

•
 

Each operation takes operands from the same 
place and puts results in the same place

•
 

This means a uniform compilation scheme

•
 

And therefore a simpler compiler



8

Why Use a Stack Machine?

•
 

Location of the operands is implicit
–

 
Always on the top of the stack

•
 

No need to specify operands explicitly
•

 
No need to specify the location of the result

•
 

Instruction is “add”
 

as opposed to “add r1

 

, r2

 

”
 (or “add rd

 

ri1

 

ri2

 

”)
⇒ Smaller encoding of instructions
⇒ More compact programs

•
 

This is one of the reasons why Java Bytecode
 uses a stack evaluation model



9

Optimizing the Stack Machine

•
 

The add
 

instruction does 3 memory operations
–

 
Two reads and one write to the stack

–
 

The top of the stack is frequently accessed
•

 
Idea: keep the top of the stack in a dedicated 
register (called the “accumulator”)
–

 
Register accesses are faster (why?)

•
 

The “add”
 

instruction is now
acc ← acc + top_of_stack

–
 

Only one memory operation!



10

Stack Machine with Accumulator

Invariants
•

 
The result of computing an expression is 
always placed in the accumulator

•
 

For an operation op(e1
 

,…,en
 

)
 

compute each ei
 and then push the accumulator (= the result of 

evaluating ei
 

) onto the stack
•

 
After the operation pop n-1 values

•
 

After computing an expression the stack is as 
before



11

Stack Machine with Accumulator: Example

Compute 7 + 5
 

using an accumulator

…

acc

stack

5

7
…

acc ← 5

12

…

⊕

acc ← acc + top_of_stack
pop

…

7

acc ← 7
push acc

7



12

A Bigger Example: 3 + (7 + 5)

Code                                Acc        Stack

acc ← 3                                  3               <init>
push

 
acc                                 3               3, <init>

acc ← 7                                  7               3, <init>
push

 
acc                                 7               7, 3, <init>

acc ← 5                                  5               7, 3, <init>
acc ← acc + top_of_stack     12              7, 3, <init>
pop

 
12              3, <init>

acc ← acc + top_of_stack     15              3, <init>
pop

 
15              <init>



13

Notes

•
 

It is very important that the stack is 
preserved across the evaluation of a 
subexpression
–

 
Stack before the evaluation of 7 + 5

 
is  3, <init>

–
 

Stack after the evaluation of 7 + 5
 

is  3, <init>
–

 
The first operand is on top of the stack



14

From Stack Machines to MIPS

•
 

The compiler generates code for a stack 
machine with accumulator

•
 

We want to run the resulting code on the 
MIPS processor (or simulator)

•
 

We simulate the stack machine instructions 
using MIPS instructions and registers



15

Simulating a Stack Machine on the MIPS…

•
 

The accumulator is kept in MIPS register $a0
•

 
The stack is kept in memory

•
 

The stack grows towards lower addresses
–

 
Standard convention on the MIPS architecture

•
 

The address of the next location on the stack  
is kept in MIPS register $sp
–

 
Guess: what does “sp”

 
stand for? 

–
 

The top of the stack is at address $sp + 4



16

MIPS Assembly

MIPS architecture
–

 
Prototypical Reduced Instruction Set Computer 
(RISC) architecture

–
 

Arithmetic operations use registers for operands 
and results

–
 

Must use load
 

and store
 

instructions to use 
operands and store results in memory

–
 

32 general purpose registers (32 bits each)
•

 
We will use $sp, $a0

 
and $t1

 
(a temporary register)

Read the SPIM documentation for more details



17

A Sample of MIPS Instructions

–
 

lw
 

reg1

 

offset(reg2

 

)
 

“load word”
•

 
Load 32-bit word from address reg2

 

+ offset
 

into reg1

–
 

add
 

reg1

 

reg2

 

reg3

•
 

reg1

 

←
 

reg2

 

+ reg3

–
 

sw
 

reg1

 

offset(reg2

 

)
 

“store word”
•

 
Store 32-bit word in reg1

 

at address reg2

 

+ offset

–
 

addiu
 

reg1

 

reg2

 

imm
 

“add immediate”
•

 
reg1

 

←
 

reg2

 

+ imm

•
 

“u”
 

means overflow is not checked
–

 
li reg imm

 
“load immediate”

•
 

reg
 

←
 

imm



18

MIPS Assembly: Example

•
 

The stack-machine code for 7 + 5
 

in MIPS:

acc ← 7
push

 
acc

acc ← 5
acc ← acc + top_of_stack

pop

li $a0 7

sw $a0 0($sp)

addiu $sp $sp -4

li $a0 5

lw $t1 4($sp)

add $a0 $a0 $t1
addiu $sp $sp 4

•
 

We now generalize this to a simple language…



19

A Small Language

•
 

A language with only integers and integer 
operations (“Mini Bar”)

P →
 

F P | F
F →

 
id(ARGS) begin E end

ARGS →
 

id, ARGS | id
E →

 
int

 
| id | if E1

 

= E2
 

then E3
 

else E4
| E1

 

+ E2
 

| E1
 

– E2
 

| id(ES)
ES →

 
E, ES | E



20

A Small Language (Cont.)

•
 

The first function definition f
 

is the “main”
 routine

•
 

Running the program on input i
 

means 
computing f(i)

•
 

Program for computing the Fibonacci numbers:
fib(x)
begin

if x = 1 then 0 else 
if x = 2 then 1 else fib(x - 1) + fib(x – 2)

end



21

Code Generation Strategy

•
 

For each expression e
 

we generate MIPS code 
that:
–

 
Computes the value of e

 
in $a0

–
 

Preserves $sp
 

and the contents of the stack

•
 

We define a code generation function cgen(e)
 whose result is the

 
code generated for

 
e

–
 

cgen(e)
 

will be recursive



22

Code Generation for Constants

•
 

The code to evaluate an integer constant 
simply copies it into the accumulator:

cgen(int) = li $a0
 

int

•
 

Note that this also preserves the stack, as 
required



23

Code Generation for Addition

cgen(e1
 

+ e2
 

) = 
cgen(e1

 

)
 

; $a0 ← value of e1

sw
 

$a0 0($sp)
 
; push that value

addiu
 

$sp $sp –4
 

; onto the stack
cgen(e2

 

)
 

; $a0 ← value of e2

lw
 

$t1 4($sp)
 
; grab value of e1

add $a0 $t1 $a0
 

; do the addition
addiu

 
$sp $sp 4

 
; pop the stack

Possible optimization:
Put the result of e1

 

directly in register $t1?



24

Code Generation for Addition: Wrong Attempt!

Optimization: Put the result of e1
 

directly in $t1?

cgen(e1
 

+ e2
 

) = 
cgen(e1

 

)
 

; $a0 ← value of e1

move $t1 $a0
 
; save that value in $t1

cgen(e2
 

)
 

; $a0 ← value of e2

; may clobber $t1
add $a0 $t1 $a0

 
; perform the addition

Try to generate code for : 3 + (7 + 5)



25

Code Generation Notes

•
 

The code for e1
 

+ e2
 

is a template with “holes”
 for code for evaluating e1

 

and e2
•

 
Stack machine code generation is recursive

•
 

Code for e1
 

+ e2
 

consists of code for e1
 

and e2
 glued together

•
 

Code generation can be written as a recursive-
 descent of the AST

–
 

At least for (arithmetic) expressions



26

Code Generation for Subtraction and Constants

New instruction: sub reg1

 

reg2 reg3

Implements
 

reg1

 

←
 

reg2

 

- reg3

cgen(e1
 

- e2
 

) = 
cgen(e1

 

)
 

; $a0 ← value of e1

sw
 

$a0 0($sp)
 

; push that value
addiu

 
$sp $sp –4

 
; onto the stack

cgen(e2
 

)
 

; $a0 ← value of e2

lw
 

$t1 4($sp)
 

; grab value of e1

sub $a0 $t1 $a0
 
; do the subtraction

addiu
 

$sp $sp 4
 
; pop the stack



27

Code Generation for Conditional

•
 

We need flow control instructions

•
 

New MIPS instruction: beq
 

reg1

 

reg2

 

label
–

 
Branch to label

 
if reg1

 

= reg2

•
 

New MIPS instruction: j label
–

 
Unconditional jump to label



28

Code Generation for If (Cont.)

cgen(if e1
 

= e2
 

then e3 else e4
 

) = 
cgen(e1

 

) 
sw $a0 0($sp)

addiu $sp $sp -4

cgen(e2
 

)
lw $t1 4($sp)

addiu $sp $sp 4

beq $a0 $t1 true_branch

false_branch:
cgen(e4

 

)
j end_if

true_branch:
cgen(e3

 

)
end_if:



29

Meet The Activation Record

•
 

Code for function calls and function 
definitions depends on the layout of the 
activation record (or “AR”)

•
 

A very simple AR suffices for this language:
–

 
The result is always in the accumulator

•
 

No need to store the result in the AR
–

 
The activation record holds actual parameters

•
 

For f(x1

 

,…,xn

 

)
 

push the arguments xn

 

,…,x1

 

onto the stack
•

 
These are the only variables in this language



30

Meet The Activation Record (Cont.)

•
 

The stack discipline guarantees that on 
function exit, $sp

 
is the same as it was before 

the args
 

got pushed (i.e., before function call)
•

 
We need the return address

•
 

It’s also handy to have a pointer to the 
current activation
–

 
This pointer lives in register $fp

 
(frame pointer)

–
 

Reason for frame pointer will be clear shortly       
(at least I hope!)



31

Layout of the Activation Record

Summary:
 

For this language, an AR with the 
caller’s frame pointer, the actual parameters, 
and the return address suffices

Picture:
 

Consider a call to f(x,y), the AR will be:

y
x

old fp

SP

FP

AR of f



32

Code Generation for Function Call

•
 

The calling sequence is the sequence of 
instructions (of both caller and callee) to set 
up a function invocation

•
 

New instruction: jal
 

label
–

 
Jump to label, save address of next instruction in 
special register $ra

–
 

On other architectures the return address is 
stored on the stack by the “call”

 
instruction



33

Code Generation for Function Call (Cont.)

cgen(f(e1
 

,…,en
 

)) = 
sw $fp 0($sp)
addiu $sp $sp -4
cgen(en

 

)
sw $a0 0($sp)
addiu $sp $sp -4
…
cgen(e1

 

)
sw $a0 0($sp)
addiu $sp $sp -4
jal f_entry

•
 

The caller saves the value 
of the frame pointer

•
 

Then it pushes the actual 
parameters in reverse 
order

•
 

The caller’s jal
 

puts the 
return address in register 
$ra

•
 

The AR so far is 4*n+4
 bytes long



34

Code Generation for Function Definition

•
 

New MIPS instruction: jr
 

reg
–

 
Jump to address in register

 
reg

cgen(f(x1
 

,…,xn
 

) begin e end) = 
f_entry:
move $fp $sp
sw $ra 0($sp)
addiu $sp $sp -4
cgen(e)
lw $ra 4($sp)
addiu $sp $sp frame_size
lw $fp 0($sp)
jr $ra

•
 

Note: The frame pointer 
points to the top, not 
bottom of the frame

•
 

Callee saves old return 
address, evaluates its 
body, pops the return 
address, pops the 
arguments, and then 
restores $fp

•
 

frame_size
 

= 4*n + 8 



35

Calling Sequence: Example for f(x,y)

Before call           On entry         After body     After call

SP

FP1

y
x

FP1

SP

FP1

SP

FP1

SP
return

y
x

FP1

FP2



36

Code Generation for Variables/Parameters

•
 

Variable references are the last construct
•

 
The “variables”

 
of a function are just its 

parameters
–

 
They are all in the AR

–
 

Pushed by the caller

•
 

Problem: Because the stack grows when 
intermediate results are saved, the variables 
are not at a fixed offset from $sp



37

Code Generation for Variables/Parameters

•
 

Solution: use the frame pointer
–

 
Always points to the return address on the stack

–
 

Since it does not move, it can be used to find the 
variables

•
 

Let xi
 

be the ith
 

(i = 1,…,n) formal parameter of 
the function for which code is being 
generated

cgen(xi
 

) = lw $a0
 

offset($fp)
 

( offset = 4*i
 

)



38

Code Generation for Variables/Parameters

•
 

Example: For a function
 

f(x,y) begin e end
 the activation and frame pointer are set up as 

follows (when evaluating e):

y
x

return

old fp
•

 
x

 
is at fp

 
+ 4

•
 

y
 

is at fp
 

+ 8
FP

SP



39

Activation Record & Code Generation Summary

•
 

The activation record must be designed 
together with the code generator 

•
 

Code generation can be done by recursive 
traversal of the AST



40

Discussion

•
 

Production compilers do different things
–

 
Emphasis is on keeping values (esp. current stack 
frame) in registers

–
 

Intermediate results are laid out in the AR, not 
pushed and popped from the stack

–
 

As a result, code generation is often performed in 
synergy with register allocation

Next time: code generation for temporaries and 
a deeper look into parameter passing 
mechanisms


	Code Generation
	The Main Idea of Today’s Lecture
	Lecture Outline
	Stack Machines
	Example of Stack Machine Operation
	Example of a Stack Machine Program
	Why Use a Stack Machine?
	Why Use a Stack Machine?
	Optimizing the Stack Machine
	Stack Machine with Accumulator
	Stack Machine with Accumulator: Example
	A Bigger Example: 3 + (7 + 5)
	Notes
	From Stack Machines to MIPS
	Simulating a Stack Machine on the MIPS…
	MIPS Assembly
	A Sample of MIPS Instructions
	MIPS Assembly: Example
	A Small Language
	A Small Language (Cont.)
	Code Generation Strategy
	Code Generation for Constants
	Code Generation for Addition
	Code Generation for Addition: Wrong Attempt!
	Code Generation Notes
	Code Generation for Subtraction and Constants
	Code Generation for Conditional
	Code Generation for If (Cont.)
	Meet The Activation Record
	Meet The Activation Record (Cont.)
	Layout of the Activation Record
	Code Generation for Function Call
	Code Generation for Function Call (Cont.)
	Code Generation for Function Definition
	Calling Sequence: Example for f(x,y)
	 Code Generation for Variables/Parameters
	Code Generation for Variables/Parameters
	Code Generation for Variables/Parameters
	Activation Record & Code Generation Summary
	Discussion

