LCLint/Splint

The Idea of Static Analyzers for C

+ C programs have lots of bugs
- Due to weaknesses of the language
- Emphasis on performance over safety
- Era in which € was born

+ Today we could design a much better C
- But replacing existing C applications would be hard

+ Retrofit this knowledge in C tool(s)

Epevvijakd Oépata Avirroéns Aoyiopukon - Midnua 06 2/27

Philosophy of Static Checkers for C

- Easy to learn

+ Incremental benefit for incremental effort
- Some benefit with zero effort
- More specifications, more checking

+ Efficiency

- No overnight analysis, please
+ Flexibility

- Flag city

Epsovirki Oépara Avinroing Aoyiopukod - Midnua 06

History of LCLint

* Larch is a major specification/theorem
proving project at MIT
- Very long-lived

+ LCLint was born from Larch
- Tries to address perceived problems with Larch

Epevvijaki Oépata Avirroéns Aoyiopukon - Midnua 06 4/27

Features

+ Check abstraction boundaries
- E.g., direct client access to representations
- Requires programmer annotations

+ Undocumented
- Use of globals

- Modification of externally visible state

* Missing initialization

Epsoviri Oépara Avinrong Aoyiopukod - Midnua 06

Basics

* LCLint adds a bool type to C
(and understands that type)

* Checks that predicates have type bool
- With appropriate flag settings
- Cafches the classic
if (x=y)..

+ This is fixed in Java

Epevvijakd Oépata Avirroéns Aoyiopukon - Midnua 06 6/27

Expressing Abstraction

+ Rewrite modules into three files

- module.c the code, as usual
- module.h “private” header
- module.lcl “public” header

+ The .Icl file contains external interface
- Function prototypes, global variables, etc.

Epsovirki Oépara Avinrong Aoyiopukod - Midnua 06 7/27

Checking Abstraction

* Abstraction is enforced via visibility rules
- Within a module, the representation is visible

- Outside a module, only the external interface is
visible

* Thus, checking abstraction boils down to type
checking

- Just as in Java, C++

Epevvijakd Oépata Avirroéns Aoyiopukon - Midnua 06 8/27

Checking State Changes

+ LCLint provides modifies clauses for declaring
allowable updates to global state

void copyDate (date *d1, date *d2)
{modifies *d1;}

+ Simply says that copyDate may modify its
first argument
- Doesn't fully handle aliasing, though

Out Parameters

+ C is weak on function results
- Return value often needed for error code

+ Idiom: One of the arguments is passed only to
hold the result

+ Declare explicitly with out declaration
- out parameters should not be read

+ Encode properties as types
+ Reduce problems to type checking

+ For efficiency, require sufficient information
on functions to type check body in isolation
- Forces annotations on function prototypes
- No support for type inference

Epsovirki Oépara Avinrong Aoyiopukod - Midnua 06 11/27

Epsovirki Oépara Avinroing Aoyiopukod - Midnua 06 9/27 Epevvijakd Oépata Avirroéns Aoyiopukon - Midnua 06 10/27
Summary Weaknesses

« LCLint v1.0 is flow insensitive

+ Types cannot change
- The type of a value is permanent
- The same for the entire scope of the variable

+ Thus, LCLint cannot check flow sensitive
properties

Epevvijakd Oépata Avirroéns Aoyiopukon - Midnua 06 12/27

A Flow-Sensitive Property

Is a pointer null?

* -
char *x = malloc(. . .) x may or may not be null

if (x)

(3 x definitely not null
else x definitely null

{ 1}

x may or may not be null

Note: x's type is flow insensitive, its nullness if flow sensitive

Epsovirki Oépara Avinrong Aoyiopukod - Midnua 06 13/27

Analyzing Memory

- LCLint was extended to analyze memory usage

* Motivated in part by the poor memory
management in LCLint
- and failed attempts to fix it

... its implementation with regard to memory
management is horrible. Memory is allocated willy-
nilly without any way to track it or recover it.
Malloced pointers are passed and assigned in a
labyrinth of complex internal data structures. ...

Epevvijakd Oépata Avirroéns Aoyiopukon - Midnua 06 14/27

Analyzing Memory (Cont.)

* Memory goes through many stages:
- Allocated
- Assigned
- Read
- Deallocated

+ There are implicit safety rules
- E.g., no read after deallocation

+ These are flow sensitive properties

Remember Available Expressions?

- suggests dataflow analysis atb
Epsoviuki Oépara Avinrong Aoyiopukod - Midnua 06 15/27 Epevvijakd Oépata Avirroéns Aoyiopukon - Midnua 06 16/27
Framework Questions

+ Goal: Preserve local checking
- Annotate functions with sufficient information

+ Example:
extern char *gname;

void setName (char *pname) {
gname = pname;

}

Epsovirki Oépara Avinrong Aoyiopukod - Midnua 06 17/27

extern char *gname;

void setName (char *pname) {
gname = phame;

}

+ Can pname be null?
+ Was gname the sole reference to storage?
+ Does the caller deallocate pname?

Epevvijakd Oépata Avirroéns Aoyiopukon - Midnua 06 18/27

Annotations: Only

+ Only storage declares a unique reference o
storage

extern only char *gname;

void setName (char *pname) {
gname = pname;

+ Error: unique reference is lost

Epsovirki Oépara Avinrong Aoyiopukod - Midnua 06 19/27

Only (Cont.)

* Only references cannot be lost
- But they can be transferred

- Consider the signature of free
void free (only void *ptr)

* Now
{ xis only here }
free(x)
{x is marked as inaccessible here}

- Note the flow sensitivity!

Epevvijakd Oépata Avirroéns Aoyiopukon - Midnua 06

20/27

Computing Flow-Sensitive Information

+ Flow-sensitive information can be expensive
- Folk wisdom: interprocedural analysis too expensive

+ LCLint analyzes each function body separately

- All needed information must be declared at
function interfaces

+ LCLint properties are atomic
- null, not-null, only, temp, returned

+ Flow-sensitive analysis of atomic properties in
a single procedure is dataf/ow analysis

Epsoviuki Oépara Avinrong Aoyiopukod - Midnua 06 21/27

Annotations: null

Consider:
extern null char *gname;

if (ghame) ... = *gnhame;

* gname is declared possibly null
- Any use must be guarded by a test
- LCLint must be able to analyze predicates
* Recognize == NULL, |= NULL
« Annotations truenull, falsenull for function calls
+ This is a more complex flow sensitive analysis

Epevvijakd Oépata Avirroéns Aoyiopukon - Midnua 06

22/27

Annotations: null

Alternatively:

extern char *gname;

... = *gname;

+ gname is declared as never null
- No need for fests
- But

+ Cannot be assigned the value of a declared null pointer
+ Cannot be assigned NULL

Epsovirki Oépara Avinrong Aoyiopukod - Midnua 06 23/27

Null

« For each variable, track:
- null, not-null, maybe null
- Must also track fields of structures
- LCLint provides annotations to support this
+ E.g., Fields can be declared as null

{gname may be null}
if (gname)
{ ghame not null}
.. = *gnhame;
+ Forward, may analysis
+ Terminates
- Domain is finite

Epevvijakd Oépata Avirroéns Aoyiopukon - Midnua 06

24/27

Aliasing

+ LCLint provides support for detecting aliases
- Nearly unique in this respect
- Many tools ignore aliasing

+ Examples:
- foo(returned char *x)
+ Return value of foo may alias x
- For tracking aliases across function calls
- foo(temp char *x)
* No new, visible aliases of x may be created

Epsovirki Oépara Avinrong Aoyiopukod - Midnua 06 25/27

Aliasing

+ For each variable, keep track of possible aliases

+ Example:
I=x;
{ | aliases x}
if (..) | = I->next; {l aliases x->next}

{I may alias x, x->next}

+ Forward, may alias analysis
+ But domain is not finitel

Conclusion

+ LCLint and Splint are ad hoc in many ways
- Unsound
- Rough treatment of loops
- Annotations are a mish mash of ideas

+ But, a success story
- Lots of ideas
- Fairly widely used

Epsoviuki Oépara Avinrong Aoyiopukod - Midnua 06 27/27

Epevvijakd Oépata Avirroéns Aoyiopukon - Midnua 06

- Guarantee termination by /ignoring loops - unsound yet useful

26/27

	LCLint/Splint
	The Idea of Static Analyzers for C
	Philosophy of Static Checkers for C
	History of LCLint
	Features
	Basics
	Expressing Abstraction
	Checking Abstraction
	Checking State Changes
	Out Parameters
	Summary
	Weaknesses
	A Flow-Sensitive Property
	Analyzing Memory
	Analyzing Memory (Cont.)
	Remember Available Expressions?
	Framework
	Questions
	Annotations: Only
	Only (Cont.)
	Computing Flow-Sensitive Information
	Annotations: null
	Annotations: null
	Null
	Aliasing
	Aliasing
	Conclusion

