Runtime Monitoring

Data Races

- Data races are a multithreaded bug
- At least two threads access a shared variable
- At least one of the thread writes the variable
- The accesses are (potentially) simultaneous

+ Races are usually undesirable
- Source of nondeterminism
+ Program state depends on timing
- Bugs are very hard to identify or reproduce

c Aoyiopuikol - Ménuo 04 3/36

Happens Before

- Event A happens before event B if
- B follows A in a single thread of control

- Ainthread g, B in thread b, event ¢ such that
* A happens ina

+ cis a synch event after ain A and before b in B
* B happens inb

+ This is the natural partial order of events

Epevvijukd ©épata Avimmoéns Aoyiopikod - Mdnua 04

5/36

Outline

Runtime monitoring of code

+ Two fopics
- Detecting data races
- Machine simulation

g Aoyiopukod - Mabnpa 04

2/36

Data Races (Cont.)

- Note: Not all data races are bad
- Just the vast majority are bad

+ Example
- Threads execute
if (predicate) x 1

- Threads where test passes race to set x
+ But x will be 1 if any thread's test is frue

Epevvnrict Oépuata Avémroéng Aoyiopukod - Madnua 04

4/36

Pre-Eraser

First race detection tools based on the
happens before relation

+ Sketch
- Monitor all data references and synch operations
- Watch for

+ Accesses of v in thread 1
+ Accesses of v in thread 2
+ With no intervening synch between 1 and 2

Epeuvirid Oéuata Avinmoéng Aoyiopikod - Mafnua 04 6/36




Problems

+ This is expensive

- Requires per thread
« List of accesses to shared data
« List of synchronization operations

+ False negatives
- Can miss races
- Needs to be tested with many schedules

Thread 1 Thread 2
y y + 1 lock (m)
lock (m) unlock (m)
unlock (m) y=y +1
E)elw\]nmi Oépota A\/mmvév]: .’\u“m LKOD - Mriﬂu 0 04 7 /36
The Discipline

+ Shared variables are protected by locks

- Discipline:

- Every access to a shared variable is protected by
at least one lock

- Any access to a shared variable unprotected by a
lock is an error

Epevviud Oéuata Aviroéne Aoyiopixos - Mibnua 04 9/36

Locksets

+ Idea 1: Infer the locks

- Observation: I+ must be one of the locks held
at the time of access

Initialize C(v) to the set of all locks (for each v)
On access to v by thread t

C(v) « C(v) n locks_held(t);
if C(v) = & then print(warning);

Epevvijukd ©épata Avimmoéns Aoyiopikod - Mdnua 04

11/36

A Different Approach

+ Happens-before tools look for actual races

- Moments in time when multiple threads access a
shared variable without protection

+ A different approach is to check invariants

- Look for examples that violate invariants that
might lead to races

g Aoyiopukod - Mabnpa 04

8736

Which Lock?

+ How do we know which lock protects a
variable?
- The program may hold many unrelated locks

- Linkage between locks and shared variables
undeclared

+ Issue
- Like any instrumentation approach, we don't have

the resources to do intensive analysis during
execution

Epevvnrict Oépuata Avémroéng Aoyiopukod - Madnua 04 10/36

Problems

+ This doesn't quite work

+ We need to deal with
- Uninitialized Data
- Read-Shared Data
- Read-Write Locks

Epeuvirid Oéuata Avinmoéng Aoyiopikod - Mafnua 04

12/36




Uninitialized Data

+ Data often initialized by one owner
* No need fo lock at this time

+ How do we know when initialization is done?
- Answer: We do not

- But, we can tell when the value is accessed by a
second thread

Epevviukd ©épata Avimmodng Aoyiopikod - Médnua 04 13/36

State Transitions

+ Each value (memory location) is in one of four
states:

Epevviud Oéuata Aviroéne Aoyiopixos - Mibnua 04 15/36

Read-Wprite Locks

* Single writer, multiple reader locks

+ Discipline: Some lock (a particular one) must
be held in either write mode or read mode for
all accesses of a shared location

+ Locks can be held either in write mode or in
read mode

Epevvijukd ©épata Avimmoéns Aoyiopikod - Mdnua 04 17/36

Read-Shared Data

+ Once created, some data is only read
+ No need to lock lock-free data

+ Idea: Don't update locksets until at least
- more than one thread has the value
- at least one is writing to the value

Epevviikd Oépota Avimmdng Aoyiopkot - Mabnua 04 14/36

New Algorithm

+ The new algorithm is as before

+ But only locations in the shared-modified
state have locksets inferred

* None of the other cases requires checking

Epevvnrict Oépuata Avémroéng Aoyiopukod - Madnua 04 16/36

Solution

+ Refine computation of locksets to express
single write exclusivety

+ For each read of a location, compute
C(v) « C(v) n locks_held(t);

+ For each write of a location, compute
C(v) « C(v) n write_locks_held(t);

Epeuvirid Oéuata Avinmoéng Aoyiopikod - Mafnua 04 18 /36




Implementation

+ Done at the binary level
- Could have been a source code tool

+ Every memory word has a shadow word
- 30 bits designated for the lockset key
+ Sets of locks represented by small integers in a hashtable
+ Depends on having not very many distinct sets of locks
- 2 bits for state in the DFA

Epevviukd ©épata Avimmodng Aoyiopikod - Médnua 04 19/36

Opinion

+ Runtime monitoring is a good idea
- Especially at the “right-level”
- Cf., program checking

+ But it is painful to do
- Binary instrumentation is a hassle
- Mapping between source and binary is opaque
- Performance is poor without a lot of effort

Epevviud Oéuata Aviroéne Aoyiopixos - Mibnua 04 21/36

Results

+ This works

- Checking the discipline finds errors with few runs
- Many imitators

+ Eraser is slow

- 10-30x slowdown
- Could be made faster with static analysis

+ Many Eraser-like tools available now

Epevviikd Oépota Avimmdng Aoyiopkot - Mabnua 04

20/36

Machine Translation

+ Idea:
- Don't run the program on the hardware
- Do run the program on the virtual machine

+ The ultimate in runtime monitoring
- Full control of every instruction

- A true universal machine
+ In the sense of Turing

Performance

* But virtual machines are slow
- Surprise
- More than 10x slowdown for naive implementation
+ And much more for detailed simulations of e.g., caches

+ Idea:
- Use dynamic binary translation

- Translate simulated code to native code
+ Onthe fly

Epevvijukd ©épata Avimmoéns Aoyiopikod - Mdnua 04 23/36

Epevvnrict Oépuata Avémroéng Aoyiopukod - Madnua 04 22/36

Epeuvirid Oéuata Avinmoéng Aoyiopikod - Mafnua 04

Dynamic Translation

+ Basic blocks are the unit of code translation

+ Translated operations work on simulated state
- Simulated machine registers stored in memory
- Simulated PC tracked by code where needed

load r3, 16(rl) = load tl simRegs[1]

load t2 16(tl)
store t2 simRegs[3]

24/36




Translation Cache

+ Translation is expensive

+ Maintain a translation cache

- Maps program counter = translated basic block
- or calls translator if needed

+ A detail

- Must detect self-modifying code
- Flush translation cache

- Done by detecting writes to translated pages

Epevviukd ©épata Avimmodng Aoyiopikod - Médnua 04

25/36

Modeling the Memory Management Unit

Embrd's goal is to simulate full workloads
- Including the host OS

This requires modeling virtual memory
- In particular, the MMU

* Mapping of virtual addresses to physical addresses
- Because MMU operations are visible to the OS

Epevviud Oéuata Aviroéne Aoyiopixos - Mibnua 04 27/36

Chaining

+ Translated basic blocks end by jumping to
main dispatch loop

- Dispatch is on program counter

+ Chaining is an optimization

- Short-circuit path through dispatch loop if target
of next basic block is statically known

g Aoyiopukod - Mabnpa 04

26/36

MMU Relocation Array

+ Maintain an array indexed by virtual page
- Array size = memory size / page size
- Array entries contain

+ Address of physical page for the virtual page
* Protection bits

- Valid/invalid, readable, writable

Dynamic Translation Revisited

+ Each memory reference is translated to

- Look up information in the MMU relocation array
- Check the protection bits

- Call out to exception routines if necessary
- Construct physical address

+ Requires 8 (optimized) instructions

Epevvijukd ©épata Avimmoéns Aoyiopikod - Mdnua 04 29/36

Epevvnrict Oépuata Avémroéng Aoyiopukod - Madnua 04 28/36

Epeuvirid Oéuata Avinmoéng Aoyiopikod - Mafnua 04

A Performance Bound

* Memory operation requires 8 instructions
+ Approx 1/3 of instructions are loads/stores

+ Implies a minimum slowdown of 3x
- Embra comes fairly close to this bound

30/36




Back to Dynamic Translation

* Modeling the MMU breaks chaining

- Why? Because processes may have different code
at same virtual address

- But this is rare

+ Solution
- Use physical addresses for chaining

- When executing translated block, first check that
virtual PC and address of code agree

- If not, go back through main dispatch loop

Epevviukd ©épata Avimmodng Aoyiopikod - Médnua 04 31/36

Beyond the MMU

- Embra is designed to support ad hoc
translations

+ Example: Accurately simulating caches
- Complete 2" level cache simulation
- Reported in paper

Epevviud Oéuata Aviroéne Aoyiopixos - Mibnua 04 33/36

More Chaining

+ Embro also does speculative chaining

+ Chain any indirect jump
- Presumably to the place it went last time

- Before executing code, check it has correct virtual
and physical address

- A kind of caching

+ Significant improvement
- 20% on some benchmarks

Epeovijixd Oépata Avartoéng Aoyiopikod - Mabnua 04

32/36

Other Neat Stuff

- Self-hosting studies
- Embra simulating Embra

+ Fast-forward studies
- Try workloads on future machines
- With more cache memory, MIPS

* Multiprocessor studies
- On one processor
- On real multiprocessors

What Happened?

+ Embra became VMWare

+ Very widely used because

- Increases reliability by providing full isolation
- Solves the 1 0S/1 machine problem

+ This always was a good idea

- Virtual machines were first pursued by IBM for
the same reasons 30 years ago

Epevvijukd ©épata Avimmoéns Aoyiopikod - Mdnua 04 35/36

Epevvnrict Oépuata Avémroéng Aoyiopukod - Madnua 04 34/36

Epeuvirid Oéuata Avinmoéng Aoyiopikod - Mafnua 04

Summary

+ Runtime monitoring is useful
- Debugging, performance analysis, safety, etc.

+ Key is not to take too much time
- In particular, no time for global analysis

- Reasonable applications 10%-500% overhead

+ Dynamic binary translation is the limit
- Cheaper techniques approximate translation

36/36




