
Testing:
 Methods, Practice, Research
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State of the World

•
 

Standard software development is simple
–

 
No rocket science here

•
 

Outline
–

 
Someone writes a program

–
 

Someone runs the program and checks that it 
behaves as expected

–
 

Someone decides when it is OK to release
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Software Development Today

Programmer Tester

Decision 
Maker

Why do we have 
this structure?
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Typical Scenario (1)

Programmer Tester

Decision 
Maker

“I’m 
done.”

“It doesn’t 
#$%& 

compile!”

“OK, calm down.  
We’ll slip the 
schedule. Try 

again.”
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Typical Scenario (2)

Programmer Tester

Decision 
Maker

“I’m 
done.”

“It doesn’t 
install!”

“Now remember, 
we’re all in this 
together.  Try 

again.”
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Typical Scenario (3)

Programmer Tester

Decision 
Maker

“I’m 
done.”

“It does the 
wrong thing 
in half the 

tests.”

“Let’s have a 
meeting to 

straighten out the 
spec.”

“No, half of 
your tests 
are wrong!”
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Typical Scenario (4)

Programmer Tester

Decision 
Maker

“I’m 
done.”

“It still fails 
some tests 
we agreed 

on.”

“Try again, but 
please

 
hurry up!”
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Typical Scenario (5)

Programmer Tester

Decision 
Maker

“I’m 
done.”

“Yes, it’s 
done!”

“Oops, the world has 
changed.  Here’s the 

new spec.”
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Key Assumptions

•
 

Development and testing must be independent
•

 
Specifications must be explicit

•
 

Specifications are always evolving
•

 
All resources (including time) are finite

•
 

Human organizations need decision makers

•
 

Examine each of these separately
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Independent Testing and Development

•
 

Testing is basic to every engineering discipline
–

 
Design a drug

–
 

Manufacture an airplane
–

 
Etc.

•
 

Why?
–

 
Because our ability to predict how our creations will 
behave is imperfect

–
 

We need to check our work, because we will make 
mistakes
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Independent Testing and Development of 
Software

•
 

In what way is software different?

•
 

Two aspects:
–

 
Folklore: “Programmers are optimists”

–
 

The implication is that programmers make poor testers

–
 

Economics: “Programming costs more than testing”
–

 
The implication is that programming is a higher-skill 
profession

•
 

How valid is the folklore, and how much is due to the 
current state of the art in testing?
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Explicit Specifications

•
 

Software involves multiple people
–

 
At least a programmer and a user

–
 

But usually multiple programmers, testers, etc.

•
 

Any team effort requires mutual 
understanding of the goal
–

 
A specification

–
 

Otherwise, team members inevitably have different 
goals in mind
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Specifications Change

•
 

Why?

•
 

Many software systems are truly “new”
–

 
Differ from all that went before in some way

–
 

Initial specification will change as problems are 
discovered and solved

•
 

The world is changing
–

 
What people want

–
 

The components you build on (e.g., the OS version)
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Software Specifications

•
 

Software specifications are usually
–

 
in prose

–
 

imprecise
–

 
out of date

•
 

Current state of specification is not conducive 
to automation
–

 
Not consumable by tools

–
 

Without a specification, there is nothing to check
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Finite Resources

•
 

Organizations make trade-offs
–

 
Not all goals can be achieved

–
 

Because resources are finite

•
 

$’s express relative costs among goals
–

 
Goals that are hard to quantify pose a problem

–
 

E.g., correctness, completeness

“We have 2 months, 5 programmers, and 2 testers.  Here is a 
priority list of features.  A feature is finished when it passes

 all of the tests for that feature; a programmer does not move 
on to a new feature until all higher priority features are 

finished or assigned to other programmers.  We start now 
and ship whatever features are finished in 60 days.”
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Summary of the State of the World

•
 

Software development today relies 
overwhelmingly on the coder/tester model

•
 

Typically half of the expense in developing a 
software product is in testing
–

 
And overwhelming, this testing is low tech
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Some Testing Topics

•
 

Industry practices
–

 
Code coverage

–
 

Black-box and white-box testing
–

 
State-of-the-art commercial tools

•
 

Testing theory
–

 
Hardness results, testing finite state machines

•
 

Research problems in testing
–

 
E.g., fault injection
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Dynamic Analysis Topics (Preliminary)

•
 

Efficient tracing
•

 
Code instrumentation

•
 

Deriving invariants from traces
•

 
Monitoring long-running systems

•
 

Commercial tools
–

 
E.g., Purify
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Specifications

•
 

Specifications are needed for any technique
–

 
Why?  Because no tool can divine what the 
software is supposed to do.

•
 

Every method is a variation on:
–

 
Get people to say something in two different ways

–
 

Check the two versions for consistency
•

 
E.g., variables’

 
types and their actual usage

•
 

E.g., test cases and the compiled code
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Specifications (Cont.)

•
 

Every technique relies on specifications
–

 
If only the semantics of the language

•
 

The current state of specification is poor

•
 

How can we get more specifications into 
programs?
–

 
Partial specs

–
 

Lightweight specs



Testing Practice
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Reality

•
 

Researchers have investigated many 
approaches to improving software quality

•
 

But the world tests

•
 

> 50% of the cost of software development is 
testing

•
 

Testing is important
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Testing Topics

•
 

Purpose of testing

•
 

Widely-used practices
–

 
Manual testing

–
 

Automated testing
–

 
Regression testing

–
 

Nightly build
–

 
Code coverage

–
 

Bug trends
–

 
Stress testing
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The Purpose of Testing

Two purposes:

1.
 

Find bugs
–

 
Find important bugs

2.
 

Elucidate the specification
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Example

•
 

Test case
Add a child to Mary Brown’s record

•
 

Version 1
–

 
Check that Ms. Brown’s # of children is one more

•
 

Version 2
–

 
Also check Mr. Brown’s # of children

•
 

Version 3
–

 
Check that no one else’s child counts changed
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Specifications

•
 

Good testers clarify the specification
–

 
This is creative, hard work

–
 

There is no realistic hope that tools will ever 
automate this

•
 

We bemoan the lack of specifications in 
software

•
 

But testers are creating specifications
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Manual Testing

•
 

Test cases are lists of instructions
–

 
“test scripts”

•
 

Someone manually executes the script
–

 
Do each action, step-by-step

•
 

Click on “login”
•

 
Enter username and password

•
 

Click “OK”
•

 
…

–
 

And manually records results

•
 

Low-tech, simple to implement
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Manual Testing

•
 

Manual testing is very widespread
–

 
Probably not dominant, but very, very common

•
 

Why? Because
–

 
Some tests can’t be automated

•
 

Usability testing
–

 
Some tests shouldn’t be automated

•
 

Not worth the cost

•
 

There are also not-so-good reasons
–

 
Not-so-good because innovation could remove them

–
 

Testers aren’t skilled enough to handle automation
–

 
Automation tools are too hard to use
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Automated Testing

•
 

Idea: 
–

 
Record manual test

–
 

Play back on demand

•
 

This doesn’t work as well as expected
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Fragility

•
 

Test recording is usually very fragile
–

 
Breaks if environment changes anything

–
 

E.g., location, background color of textbox

•
 

More generally, automation tools cannot 
generalize a test
–

 
They literally record exactly what happened

–
 

If anything changes, the test breaks

•
 

A hidden strength of manual testing
–

 
Because people are doing the tests, ability to adapt 
tests to slightly modified situations is built-in 
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Breaking Tests

•
 

When code evolves, tests break
–

 
E.g., change the name of a dialog box

–
 

Any test that depends on the name of that box 
breaks

•
 

Maintaining tests is a lot of work
–

 
Broken tests must be fixed; this is expensive

–
 

Cost is proportional to the number of tests
–

 
Implies that more tests is not necessarily better
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Improved Automated Testing

•
 

Recorded tests are too low level
–

 
E.g., every test contains the name of the dialog box

•
 

Need to abstract tests
–

 
Replace dialog box string by variable name X

–
 

Variable name X
 

is maintained in one place
•

 
So that when the dialog box name changes, only X

 
needs to be 

updated and all the tests work again

•
 

This is just structured programming
–

 
Just as hard as any other system design

–
 

Really, a way of making the specification more concise
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Back to Specifications

•
 

Specifying software is really hard

•
 

In formal methods community, much 
bemoaning of level of detail required to 
specify a system
–

 
But this has nothing to do with formal methods

–
 

Any specification approach must express the 
details

•
 

The difficulty of automating testing is in the 
same category
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Discussion

•
 

Testers have two jobs
–

 
Clarify the specification

–
 

Find (important) bugs

•
 

Only the latter is subject to automation

•
 

Helps explain why there is so much manual 
testing
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Regression Testing

•
 

Idea
–

 
When you find a bug,

–
 

Write a test that exhibits the bug,
–

 
And always run that test when the code changes,

–
 

So that the bug doesn’t reappear

•
 

Without regression testing, it is surprising 
how often old bugs reoccur
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Regression Testing (Cont.)

•
 

Regression testing ensures forward progress
–

 
We never go back to old bugs

•
 

Regression testing can be manual or automatic
–

 
Ideally, run regressions after every change

–
 

To detect problems as quickly as possible

•
 

But, regression testing is expensive
–

 
Limits how often it can be run in practice

–
 

Reducing cost is a long-standing research problem
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Regression Testing (Cont.)

•
 

Note other tests (besides bug tests) can be 
checked for regression

•
 

Ideally, entire suite of tests is rerun on a 
regular basis to assure old tests still work
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Nightly Build

•
 

Build and test the system regularly
–

 
Every night

•
 

Why? Because it is easier to fix problems 
earlier than later
–

 
Easier to find the cause after one change than 
after 1,000 changes

–
 

Avoids new code from building on the buggy code

•
 

Test is usually subset of full regression test
–

 
“smoke test”

–
 

Just make sure there is nothing horribly wrong
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A Problem

•
 

So far we have:
Measure changes regularly

 
(nightly build)

Make monotonic progress
 

(regression)

•
 

How do we know when we are done?
–

 
Could keep going forever

•
 

But, testing can only find bugs, not prove their 
absence
–

 
We need a proxy for the absence of bugs
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Typical Scenario 

Programmer Tester

Decision 
Maker

“I’m 
done.”

“It passes 
all tests!”

“Can we ship? Or are 
there serious bugs 
we haven’t caught?
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Code Coverage

•
 

Idea
–

 
Code that has never been executed likely has bugs

•
 

This leads to the notion of code coverage
–

 
Divide a program into units (e.g., statements)

–
 

Define the coverage of a test suite to be

# of statements executed by suite
# of statements
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Code Coverage (Cont.)

•
 

Code coverage has proven value
–

 
It’s a real metric, though far from perfect

•
 

But 100% coverage does not mean no bugs
–

 
E.g., a bug visible after loop executes 1,025 times

•
 

And 100% coverage is almost never achieved
–

 
Ships happen with < 60% coverage

–
 

High coverage may not even be desirable
•

 
May be better to devote more time to tricky parts with 
good coverage
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Using Code Coverage

•
 

Code coverage helps identify weak test suites

•
 

Tricky bits with low coverage are a danger 
sign

•
 

Areas with low coverage suggest something is 
missing in the test suite
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Example

status = perform_operation();
if (status == FATAL_ERROR)

exit(3);

•
 

Coverage says the
 

exit is never taken
•

 
Straightforward to fix
–

 
Add a case with a fatal error

•
 

But are there other error conditions that are 
not checked in the code?
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The Lesson

•
 

Code coverage can’t complain about missing 
code
–

 
The case not handled

•
 

But coverage can hint at missing cases
–

 
Areas of poor coverage ⇒ areas where not enough 
thought has been given to specification
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Bug Trends

•
 

Idea: Measure rate at which new bugs are 
found
–

 
Rational: When this flattens out it means
1.

 
The cost/bug found is increasing dramatically

2.
 

There aren’t many bugs left to find

•
 

Assumes testing resources are well-deployed
–

 
We aren’t overlooking any part of the code

•
 

Assumes bugs can be fixed
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Stress Testing

•
 

Push system into extreme situations
–

 
And see if it still works…

•
 

Stress
–

 
Performance

•
 

Feed data at very high or very low rates
–

 
Interfaces

•
 

Replace APIs with badly behaved stubs
–

 
Internal structures

•
 

Works for any size array?  Try sizes 0 and 1
–

 
Resources

•
 

Set memory artificially low
•

 
Same for # of file descriptors, network connections, etc.
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Stress Testing (Cont.)

•
 

Stress testing will find many obscure bugs
–

 
Explores the corner cases of the design

•
 

Some may not be worth fixing
–

 
As unlikely in practice

•
 

A corner case now is tomorrow’s common case
–

 
Data races, data sizes always increasing

–
 

Software is often stress tested
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The Big Picture

•
 

Testing practice has grown by trial-and-error 
–

 
Many, many errors

•
 

Standard practice
–

 
Measure progress often

 
(nightly builds)

–
 

Make forward progress
 

(regression testing)
–

 
Stopping condition

 
(coverage, bug trends)
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What Can We Learn From Testing Research?

•
 

Observations
–

 
A huge amount of labor goes into testing

•
 

> 50% of project investment
–

 
Much of this labor just ferrets out the spec

•
 

Question: Can we redirect this effort into 
more useful specifications?
–

 
More useful for tools, that is



Testing Research
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Overview

•
 

Testing research has a long history
–

 
At least to the 1960’s

•
 

Much work is focused on metrics
–

 
Assigning numbers to programs

–
 

Assigning numbers to test suites
–

 
Heavily influenced by industry practice

•
 

More recent work focuses on deeper analysis
–

 
Semantic analysis, in the sense we understand it
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Random Testing

•
 

About ¼
 

of Unix utilities crash when fed 
random input strings
–

 
Up to 100,000 characters

•
 

What does this say about testing?

•
 

What does this say about Unix?
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What it Says About Testing

•
 

Randomization is a highly effective technique
–

 
And we use very little of it in software

•
 

“A random walk through the state space”

•
 

To say anything rigorous, must be able to 
characterize the distribution of inputs
–

 
Easy for string utilities

–
 

Harder for systems with more arcane input
•

 
E.g., parsers for context-free grammars
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What it Says About Unix

•
 

What sort of bugs did they find?
–

 
Buffer overruns

–
 

Format string errors
–

 
Wild pointers/array out of bounds

–
 

Signed/unsigned characters
–

 
Failure to handle return codes

–
 

Race conditions

•
 

Nearly all of these are problems with C!
–

 
Would disappear in Java

–
 

Exceptions are races & return codes
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One Interesting Bug

csh
 

!0%8f

•
 

! is the history lookup operator
–

 
No command beginning with 0%8f

•
 

csh
 

passes an error “0%8f: Not found”
 

to an 
error printing routine

•
 

Which prints it with printf()
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Efficient Regression Testing

•
 

Problem: Regression testing is expensive

•
 

Observation: Changes don’t affect every test
–

 
And tests that couldn’t change need not be run

•
 

Idea: Use a conservative static analysis to 
prune test suite
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The Algorithm

Two pieces:
1.

 
Run the tests and record for each basic block 
which tests reach that block

2.
 

After modifications, do a DFS of the new control 
flow graph.  Wherever it differs from the original 
control flow graph, run all tests that reach that 
point
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Example

t1

t1

t1

t1

t2

t2

t2

t3

t3

t3

t3

Label each node 
of the control 
flow graph with 
the set of tests 
that reach it.

When a 
statement is 
modified, rerun 
just the tests 
reaching that 
statement.
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Experience

•
 

This works
–

 
And it works better on larger programs

–
 

# of test cases to rerun reduced by > 90%

•
 

Total cost less than cost of running all tests
–

 
Total cost = cost of tests run + cost of tool

•
 

Why not use this?
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What is a Good Test?

•
 

We’re implementing a function F on domain D

•
 

A test set T ⊆
 

D is reliable if for all programs P

(∀
 

t ∈
 

T. P(t) = F(t)) ⇒ (∀
 

t ∈
 

D. P(t) = F(t))

•
 

Says that a good test set is one that implies 
the program meets its specification
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Good News/Bad News

•
 

Good News
–

 
There are interesting examples of reliable test 
sets

–
 

Example: A function that sorts N numbers using 
comparisons sorts correctly iff it sorts all inputs 
consisting of 0,1 correctly

–
 

This is a finite reliable test set

•
 

Bad News
–

 
There is no effective method for generating finite 
reliable test sets
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An Aside

•
 

It’s clear that reliable test sets must be 
impossible to compute in general

•
 

But most programs are not diagonalizing 
Turing machines…

•
 

It ought to be possible to characterize finite 
reliable test sets for certain classes of 
programs
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What is a Good Test?

•
 

We’re implementing a function F on domain D
•

 
A test set T ⊆

 
D is reliable if for all programs P

(∀
 

t ∈
 

T. P(t) = F(t)) ⇒ (∀
 

t ∈
 

D. P(t) = F(t))

•
 

equivalently, for all programs P
(∃

 
t ∈

 
D. P(t) ≠

 
F(t)) ⇒ (∃

 
t ∈

 
T. P(t) ≠

 
F(t))

•
 

But we can’t afford to quantify over all 
programs . . .
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From Infinite to Finite

•
 

We need to cut down the size of the problem
–

 
Check reliability w.r.t. a smaller set of programs

•
 

Idea: Just check a finite number of 
(systematic) variations on the program
–

 
E.g., replace x > 0

 
by x < 0

–
 

Replace I
 

by I+1, I-1

•
 

This is mutation analysis
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Mutation Analysis

•
 

Modify (mutate) each statement in the 
program in finitely many different ways

•
 

Each modification is one mutant

•
 

Check for adequacy w.r.t. the set of mutants
–

 
Find a set of test cases that distinguishes the 
program from the mutants
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What Justifies This?

•
 

The “competent programmer assumption”
The program is close to right to begin with

•
 

It makes the infinite finite
We will inevitably do this anyway; at least here it is 

clear what we are doing
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The Plan

•
 

Generate mutants of program
 

P

•
 

Generate tests
–

 
By some process

•
 

For each test t
–

 
For each mutant M

•
 

If M(t) ≠
 

P(t)
 

mark M
 

as killed

•
 

If the tests kill all mutants, the tests are 
reliable
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The Problem

•
 

This is dreadfully slow

•
 

Lots of mutants
•

 
Lots of tests

•
 

Running each mutant on each test is expensive

•
 

But early efforts more or less did exactly this
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Better Algorithms

•
 

Observation: Mutants are nearly the same as 
the original program

•
 

Idea: Compile one program that incorporates 
and checks all of the mutations simultaneously
–

 
A so-called meta-mutant

•
 

Weak mutation
–

 
Check only that mutant produces different state 
after mutation, not different final output
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Metamutant with Weak Mutation

•
 

Constructing a metamutant for weak mutation 
is straightforward

•
 

A statement has a set of mutated statements
–

 
With any updates done to fresh variables

X := Y << 1
 
X1

 

:= Y << 2 X2
 

:= Y >> 1
–

 
After statement, check to see if values differ

X == X1

 

X == X2
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Comments

•
 

A metamutant for weak mutation should be 
quite practical
–

 
Constant factor slowdown over original program

•
 

If test suite fails to kill all mutants, then 
(maybe) it is inadequate
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