
Testing:
 Methods, Practice, Research

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 2 / 72

State of the World

•

Standard software development is simple
–

No rocket science here

•

Outline
–

Someone writes a program

–

Someone runs the program and checks that it
behaves as expected

–

Someone decides when it is OK to release

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 3 / 72

Software Development Today

Programmer Tester

Decision
Maker

Why do we have
this structure?

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 4 / 72

Typical Scenario (1)

Programmer Tester

Decision
Maker

“I’m
done.”

“It doesn’t
#$%&

compile!”

“OK, calm down.
We’ll slip the
schedule. Try

again.”

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 5 / 72

Typical Scenario (2)

Programmer Tester

Decision
Maker

“I’m
done.”

“It doesn’t
install!”

“Now remember,
we’re all in this
together. Try

again.”

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 6 / 72

Typical Scenario (3)

Programmer Tester

Decision
Maker

“I’m
done.”

“It does the
wrong thing
in half the

tests.”

“Let’s have a
meeting to

straighten out the
spec.”

“No, half of
your tests
are wrong!”

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 7 / 72

Typical Scenario (4)

Programmer Tester

Decision
Maker

“I’m
done.”

“It still fails
some tests
we agreed

on.”

“Try again, but
please

hurry up!”

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 8 / 72

Typical Scenario (5)

Programmer Tester

Decision
Maker

“I’m
done.”

“Yes, it’s
done!”

“Oops, the world has
changed. Here’s the

new spec.”

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 9 / 72

Key Assumptions

•

Development and testing must be independent
•

Specifications must be explicit

•

Specifications are always evolving
•

All resources (including time) are finite

•

Human organizations need decision makers

•

Examine each of these separately

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 10 / 72

Independent Testing and Development

•

Testing is basic to every engineering discipline
–

Design a drug

–

Manufacture an airplane
–

Etc.

•

Why?
–

Because our ability to predict how our creations will
behave is imperfect

–

We need to check our work, because we will make
mistakes

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 11 / 72

Independent Testing and Development of
Software

•

In what way is software different?

•

Two aspects:
–

Folklore: “Programmers are optimists”

–

The implication is that programmers make poor testers

–

Economics: “Programming costs more than testing”
–

The implication is that programming is a higher-skill
profession

•

How valid is the folklore, and how much is due to the
current state of the art in testing?

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 12 / 72

Explicit Specifications

•

Software involves multiple people
–

At least a programmer and a user

–

But usually multiple programmers, testers, etc.

•

Any team effort requires mutual
understanding of the goal
–

A specification

–

Otherwise, team members inevitably have different
goals in mind

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 13 / 72

Specifications Change

•

Why?

•

Many software systems are truly “new”
–

Differ from all that went before in some way

–

Initial specification will change as problems are
discovered and solved

•

The world is changing
–

What people want

–

The components you build on (e.g., the OS version)

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 14 / 72

Software Specifications

•

Software specifications are usually
–

in prose

–

imprecise
–

out of date

•

Current state of specification is not conducive
to automation
–

Not consumable by tools

–

Without a specification, there is nothing to check

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 15 / 72

Finite Resources

•

Organizations make trade-offs
–

Not all goals can be achieved

–

Because resources are finite

•

$’s express relative costs among goals
–

Goals that are hard to quantify pose a problem

–

E.g., correctness, completeness

“We have 2 months, 5 programmers, and 2 testers. Here is a
priority list of features. A feature is finished when it passes

 all of the tests for that feature; a programmer does not move
on to a new feature until all higher priority features are

finished or assigned to other programmers. We start now
and ship whatever features are finished in 60 days.”

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 16 / 72

Summary of the State of the World

•

Software development today relies
overwhelmingly on the coder/tester model

•

Typically half of the expense in developing a
software product is in testing
–

And overwhelming, this testing is low tech

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 17 / 72

Some Testing Topics

•

Industry practices
–

Code coverage

–

Black-box and white-box testing
–

State-of-the-art commercial tools

•

Testing theory
–

Hardness results, testing finite state machines

•

Research problems in testing
–

E.g., fault injection

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 18 / 72

Dynamic Analysis Topics (Preliminary)

•

Efficient tracing
•

Code instrumentation

•

Deriving invariants from traces
•

Monitoring long-running systems

•

Commercial tools
–

E.g., Purify

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 19 / 72

Specifications

•

Specifications are needed for any technique
–

Why? Because no tool can divine what the
software is supposed to do.

•

Every method is a variation on:
–

Get people to say something in two different ways

–

Check the two versions for consistency
•

E.g., variables’

types and their actual usage

•

E.g., test cases and the compiled code

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 20 / 72

Specifications (Cont.)

•

Every technique relies on specifications
–

If only the semantics of the language

•

The current state of specification is poor

•

How can we get more specifications into
programs?
–

Partial specs

–

Lightweight specs

Testing Practice

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 22 / 72

Reality

•

Researchers have investigated many
approaches to improving software quality

•

But the world tests

•

> 50% of the cost of software development is
testing

•

Testing is important

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 23 / 72

Testing Topics

•

Purpose of testing

•

Widely-used practices
–

Manual testing

–

Automated testing
–

Regression testing

–

Nightly build
–

Code coverage

–

Bug trends
–

Stress testing

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 24 / 72

The Purpose of Testing

Two purposes:

1.

Find bugs
–

Find important bugs

2.

Elucidate the specification

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 25 / 72

Example

•

Test case
Add a child to Mary Brown’s record

•

Version 1
–

Check that Ms. Brown’s # of children is one more

•

Version 2
–

Also check Mr. Brown’s # of children

•

Version 3
–

Check that no one else’s child counts changed

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 26 / 72

Specifications

•

Good testers clarify the specification
–

This is creative, hard work

–

There is no realistic hope that tools will ever
automate this

•

We bemoan the lack of specifications in
software

•

But testers are creating specifications

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 27 / 72

Manual Testing

•

Test cases are lists of instructions
–

“test scripts”

•

Someone manually executes the script
–

Do each action, step-by-step

•

Click on “login”
•

Enter username and password

•

Click “OK”
•

…

–

And manually records results

•

Low-tech, simple to implement

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 28 / 72

Manual Testing

•

Manual testing is very widespread
–

Probably not dominant, but very, very common

•

Why? Because
–

Some tests can’t be automated

•

Usability testing
–

Some tests shouldn’t be automated

•

Not worth the cost

•

There are also not-so-good reasons
–

Not-so-good because innovation could remove them

–

Testers aren’t skilled enough to handle automation
–

Automation tools are too hard to use

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 29 / 72

Automated Testing

•

Idea:
–

Record manual test

–

Play back on demand

•

This doesn’t work as well as expected

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 30 / 72

Fragility

•

Test recording is usually very fragile
–

Breaks if environment changes anything

–

E.g., location, background color of textbox

•

More generally, automation tools cannot
generalize a test
–

They literally record exactly what happened

–

If anything changes, the test breaks

•

A hidden strength of manual testing
–

Because people are doing the tests, ability to adapt
tests to slightly modified situations is built-in

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 31 / 72

Breaking Tests

•

When code evolves, tests break
–

E.g., change the name of a dialog box

–

Any test that depends on the name of that box
breaks

•

Maintaining tests is a lot of work
–

Broken tests must be fixed; this is expensive

–

Cost is proportional to the number of tests
–

Implies that more tests is not necessarily better

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 32 / 72

Improved Automated Testing

•

Recorded tests are too low level
–

E.g., every test contains the name of the dialog box

•

Need to abstract tests
–

Replace dialog box string by variable name X

–

Variable name X

is maintained in one place
•

So that when the dialog box name changes, only X

needs to be

updated and all the tests work again

•

This is just structured programming
–

Just as hard as any other system design

–

Really, a way of making the specification more concise

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 33 / 72

Back to Specifications

•

Specifying software is really hard

•

In formal methods community, much
bemoaning of level of detail required to
specify a system
–

But this has nothing to do with formal methods

–

Any specification approach must express the
details

•

The difficulty of automating testing is in the
same category

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 34 / 72

Discussion

•

Testers have two jobs
–

Clarify the specification

–

Find (important) bugs

•

Only the latter is subject to automation

•

Helps explain why there is so much manual
testing

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 35 / 72

Regression Testing

•

Idea
–

When you find a bug,

–

Write a test that exhibits the bug,
–

And always run that test when the code changes,

–

So that the bug doesn’t reappear

•

Without regression testing, it is surprising
how often old bugs reoccur

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 36 / 72

Regression Testing (Cont.)

•

Regression testing ensures forward progress
–

We never go back to old bugs

•

Regression testing can be manual or automatic
–

Ideally, run regressions after every change

–

To detect problems as quickly as possible

•

But, regression testing is expensive
–

Limits how often it can be run in practice

–

Reducing cost is a long-standing research problem

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 37 / 72

Regression Testing (Cont.)

•

Note other tests (besides bug tests) can be
checked for regression

•

Ideally, entire suite of tests is rerun on a
regular basis to assure old tests still work

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 38 / 72

Nightly Build

•

Build and test the system regularly
–

Every night

•

Why? Because it is easier to fix problems
earlier than later
–

Easier to find the cause after one change than
after 1,000 changes

–

Avoids new code from building on the buggy code

•

Test is usually subset of full regression test
–

“smoke test”

–

Just make sure there is nothing horribly wrong

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 39 / 72

A Problem

•

So far we have:
Measure changes regularly

(nightly build)

Make monotonic progress

(regression)

•

How do we know when we are done?
–

Could keep going forever

•

But, testing can only find bugs, not prove their
absence
–

We need a proxy for the absence of bugs

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 40 / 72

Typical Scenario

Programmer Tester

Decision
Maker

“I’m
done.”

“It passes
all tests!”

“Can we ship? Or are
there serious bugs
we haven’t caught?

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 41 / 72

Code Coverage

•

Idea
–

Code that has never been executed likely has bugs

•

This leads to the notion of code coverage
–

Divide a program into units (e.g., statements)

–

Define the coverage of a test suite to be

of statements executed by suite
of statements

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 42 / 72

Code Coverage (Cont.)

•

Code coverage has proven value
–

It’s a real metric, though far from perfect

•

But 100% coverage does not mean no bugs
–

E.g., a bug visible after loop executes 1,025 times

•

And 100% coverage is almost never achieved
–

Ships happen with < 60% coverage

–

High coverage may not even be desirable
•

May be better to devote more time to tricky parts with
good coverage

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 43 / 72

Using Code Coverage

•

Code coverage helps identify weak test suites

•

Tricky bits with low coverage are a danger
sign

•

Areas with low coverage suggest something is
missing in the test suite

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 44 / 72

Example

status = perform_operation();
if (status == FATAL_ERROR)

exit(3);

•

Coverage says the

exit is never taken
•

Straightforward to fix
–

Add a case with a fatal error

•

But are there other error conditions that are
not checked in the code?

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 45 / 72

The Lesson

•

Code coverage can’t complain about missing
code
–

The case not handled

•

But coverage can hint at missing cases
–

Areas of poor coverage ⇒ areas where not enough
thought has been given to specification

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 46 / 72

Bug Trends

•

Idea: Measure rate at which new bugs are
found
–

Rational: When this flattens out it means
1.

The cost/bug found is increasing dramatically

2.

There aren’t many bugs left to find

•

Assumes testing resources are well-deployed
–

We aren’t overlooking any part of the code

•

Assumes bugs can be fixed

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 47 / 72

Stress Testing

•

Push system into extreme situations
–

And see if it still works…

•

Stress
–

Performance

•

Feed data at very high or very low rates
–

Interfaces

•

Replace APIs with badly behaved stubs
–

Internal structures

•

Works for any size array? Try sizes 0 and 1
–

Resources

•

Set memory artificially low
•

Same for # of file descriptors, network connections, etc.

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 48 / 72

Stress Testing (Cont.)

•

Stress testing will find many obscure bugs
–

Explores the corner cases of the design

•

Some may not be worth fixing
–

As unlikely in practice

•

A corner case now is tomorrow’s common case
–

Data races, data sizes always increasing

–

Software is often stress tested

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 49 / 72

The Big Picture

•

Testing practice has grown by trial-and-error
–

Many, many errors

•

Standard practice
–

Measure progress often

(nightly builds)

–

Make forward progress

(regression testing)
–

Stopping condition

(coverage, bug trends)

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 50 / 72

What Can We Learn From Testing Research?

•

Observations
–

A huge amount of labor goes into testing

•

> 50% of project investment
–

Much of this labor just ferrets out the spec

•

Question: Can we redirect this effort into
more useful specifications?
–

More useful for tools, that is

Testing Research

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 52 / 72

Overview

•

Testing research has a long history
–

At least to the 1960’s

•

Much work is focused on metrics
–

Assigning numbers to programs

–

Assigning numbers to test suites
–

Heavily influenced by industry practice

•

More recent work focuses on deeper analysis
–

Semantic analysis, in the sense we understand it

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 53 / 72

Random Testing

•

About ¼

of Unix utilities crash when fed
random input strings
–

Up to 100,000 characters

•

What does this say about testing?

•

What does this say about Unix?

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 54 / 72

What it Says About Testing

•

Randomization is a highly effective technique
–

And we use very little of it in software

•

“A random walk through the state space”

•

To say anything rigorous, must be able to
characterize the distribution of inputs
–

Easy for string utilities

–

Harder for systems with more arcane input
•

E.g., parsers for context-free grammars

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 55 / 72

What it Says About Unix

•

What sort of bugs did they find?
–

Buffer overruns

–

Format string errors
–

Wild pointers/array out of bounds

–

Signed/unsigned characters
–

Failure to handle return codes

–

Race conditions

•

Nearly all of these are problems with C!
–

Would disappear in Java

–

Exceptions are races & return codes

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 56 / 72

One Interesting Bug

csh

!0%8f

•

! is the history lookup operator
–

No command beginning with 0%8f

•

csh

passes an error “0%8f: Not found”

to an
error printing routine

•

Which prints it with printf()

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 57 / 72

Efficient Regression Testing

•

Problem: Regression testing is expensive

•

Observation: Changes don’t affect every test
–

And tests that couldn’t change need not be run

•

Idea: Use a conservative static analysis to
prune test suite

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 58 / 72

The Algorithm

Two pieces:
1.

Run the tests and record for each basic block
which tests reach that block

2.

After modifications, do a DFS of the new control
flow graph. Wherever it differs from the original
control flow graph, run all tests that reach that
point

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 59 / 72

Example

t1

t1

t1

t1

t2

t2

t2

t3

t3

t3

t3

Label each node
of the control
flow graph with
the set of tests
that reach it.

When a
statement is
modified, rerun
just the tests
reaching that
statement.

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 60 / 72

Experience

•

This works
–

And it works better on larger programs

–

of test cases to rerun reduced by > 90%

•

Total cost less than cost of running all tests
–

Total cost = cost of tests run + cost of tool

•

Why not use this?

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 61 / 72

What is a Good Test?

•

We’re implementing a function F on domain D

•

A test set T ⊆

D is reliable if for all programs P

(∀

t ∈

T. P(t) = F(t)) ⇒ (∀

t ∈

D. P(t) = F(t))

•

Says that a good test set is one that implies
the program meets its specification

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 62 / 72

Good News/Bad News

•

Good News
–

There are interesting examples of reliable test
sets

–

Example: A function that sorts N numbers using
comparisons sorts correctly iff it sorts all inputs
consisting of 0,1 correctly

–

This is a finite reliable test set

•

Bad News
–

There is no effective method for generating finite
reliable test sets

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 63 / 72

An Aside

•

It’s clear that reliable test sets must be
impossible to compute in general

•

But most programs are not diagonalizing
Turing machines…

•

It ought to be possible to characterize finite
reliable test sets for certain classes of
programs

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 64 / 72

What is a Good Test?

•

We’re implementing a function F on domain D
•

A test set T ⊆

D is reliable if for all programs P

(∀

t ∈

T. P(t) = F(t)) ⇒ (∀

t ∈

D. P(t) = F(t))

•

equivalently, for all programs P
(∃

t ∈

D. P(t) ≠

F(t)) ⇒ (∃

t ∈

T. P(t) ≠

F(t))

•

But we can’t afford to quantify over all
programs . . .

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 65 / 72

From Infinite to Finite

•

We need to cut down the size of the problem
–

Check reliability w.r.t. a smaller set of programs

•

Idea: Just check a finite number of
(systematic) variations on the program
–

E.g., replace x > 0

by x < 0

–

Replace I

by I+1, I-1

•

This is mutation analysis

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 66 / 72

Mutation Analysis

•

Modify (mutate) each statement in the
program in finitely many different ways

•

Each modification is one mutant

•

Check for adequacy w.r.t. the set of mutants
–

Find a set of test cases that distinguishes the
program from the mutants

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 67 / 72

What Justifies This?

•

The “competent programmer assumption”
The program is close to right to begin with

•

It makes the infinite finite
We will inevitably do this anyway; at least here it is

clear what we are doing

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 68 / 72

The Plan

•

Generate mutants of program

P

•

Generate tests
–

By some process

•

For each test t
–

For each mutant M

•

If M(t) ≠

P(t)

mark M

as killed

•

If the tests kill all mutants, the tests are
reliable

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 69 / 72

The Problem

•

This is dreadfully slow

•

Lots of mutants
•

Lots of tests

•

Running each mutant on each test is expensive

•

But early efforts more or less did exactly this

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 70 / 72

Better Algorithms

•

Observation: Mutants are nearly the same as
the original program

•

Idea: Compile one program that incorporates
and checks all of the mutations simultaneously
–

A so-called meta-mutant

•

Weak mutation
–

Check only that mutant produces different state
after mutation, not different final output

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 71 / 72

Metamutant with Weak Mutation

•

Constructing a metamutant for weak mutation
is straightforward

•

A statement has a set of mutated statements
–

With any updates done to fresh variables

X := Y << 1

X1

:= Y << 2 X2

:= Y >> 1
–

After statement, check to see if values differ

X == X1

X == X2

Ερευνητικά Θέματα Ανάπτυξης Λογισμικού - Μάθημα 03 72 / 72

Comments

•

A metamutant for weak mutation should be
quite practical
–

Constant factor slowdown over original program

•

If test suite fails to kill all mutants, then
(maybe) it is inadequate

	Testing:�Methods, Practice, Research
	State of the World
	Software Development Today
	Typical Scenario (1)
	Typical Scenario (2)
	Typical Scenario (3)
	Typical Scenario (4)
	Typical Scenario (5)
	Key Assumptions
	Independent Testing and Development
	Independent Testing and Development of Software
	Explicit Specifications
	Specifications Change
	Software Specifications
	Finite Resources
	Summary of the State of the World
	Some Testing Topics
	Dynamic Analysis Topics (Preliminary)
	Specifications
	Specifications (Cont.)
	Testing Practice
	Reality
	Testing Topics
	The Purpose of Testing
	Example
	Specifications
	Manual Testing
	Manual Testing
	Automated Testing
	Fragility
	Breaking Tests
	Improved Automated Testing
	Back to Specifications
	Discussion
	Regression Testing
	Regression Testing (Cont.)
	Regression Testing (Cont.)
	Nightly Build
	A Problem
	Typical Scenario
	Code Coverage
	Code Coverage (Cont.)
	Using Code Coverage
	Example
	The Lesson
	Bug Trends
	Stress Testing
	Stress Testing (Cont.)
	The Big Picture
	What Can We Learn From Testing Research?
	Testing Research
	Overview
	Random Testing
	What it Says About Testing
	What it Says About Unix
	One Interesting Bug
	Efficient Regression Testing
	The Algorithm
	Example
	Experience
	What is a Good Test?
	Good News/Bad News
	An Aside
	What is a Good Test?
	From Infinite to Finite
	Mutation Analysis
	What Justifies This?
	The Plan
	The Problem
	Better Algorithms
	Metamutant with Weak Mutation
	Comments

