State of the World

+ Standard software development is simple
- No rocket science here

Testing:
Methods, Practice, Research * Outline
- Someone writes a program
- Someone runs the program and checks that it

behaves as expected
- Someone decides when it is OK to release

Epeovnui Oégiata Avirmoéns Aoyiopukon - Midnua 02

Typical Scenario (1)

Software Development Today

“OK, calm down.
We'll slip the
schedule. Try

again."

o

Why do we have
this structure?

Decision
Maker

Decision
Maker

#$%b

"It doesn't
compilel”

Programmer

Programmer

4/72

3/72 Epeovnuicd Oépata Avérmuine Aoyopukod - Manua 02

Epsovnrka Oépara Avimmuine Aoyiopukod - Madnpua 02

Typical Scenario (3)

Typical Scenario (2)

“Let's have a
meeting to

straighten out the

_ spec.” B

“Now remember,
we're all in this
together. Try

—_ again.” B

Decision
Maker

“I'm
~. done.”
*No, half of |

your fests
are wrong!”

sovnikd Oéuata Avémruéne Aoyiopukod - Madnuo 02

Decision

"It does the

wrong thing

in half the
tests.”

"It doesn't
installl”

A

Programmer

Programmer

6/72

Ej

5/72

Epeovijuixd Oépora Avimugn Aoyiopikod - Mddnua 02

Typical Scenario (4)

(’ "“Try again, but N
_— please hurry up!”
N -
Decision ~

(Tt atill faile)
It still fails
some tests
we agreed
\ on."
- - /
Programmer
Epeovnrid Opiara Avimmoens Aoyiouikos - Madnua 02 7172

Typical Scenario (5)

changed. Here's the

‘TOeps, the world hu;
new spec.”

A
Decision
Maker

Programmer

] “Yes, it's)
donel”

Epeovnui Oégiata Avirmoéns Aoyiopukon - Midnua 02 8/72

Key Assumptions

- Development and testing must be independent
+ Specifications must be explicit

+ Specifications are always evolving

+ All resources (including time) are finite

*+ Human organizations need decision makers

+ Examine each of these separately

Epsovnrka Oépara Avimmuine Aoyiopukod - Madnpua 02 9 /72

Independent Testing and Development

+ Testing is basic to every engineering discipline
- Design a drug
- Manufacture an airplane
- Etc.

+ Why?
- Because our ability to predict how our creations will
behave is imperfect

- We need to check our work, because we will make
mistakes

Epeovnuicd Oépata Avérmuine Aoyopukod - Manua 02 10/ 72

Independent Testing and Development of
Software

* Inwhat way is software different?

+ Two aspects:
- Folklore: "Programmers are optimists”
- The implication is that programmers make poor testers

- Economics: "Programming costs more than testing”
- The implication is that programming is a higher-skill
profession

+ How valid is the folklore, and how much is due to the
current state of the art in testing?

Epeovijuixd Oépota Avimrugne Aoyiopikod - Mddnua 02 11/72

Explicit Specifications

- Software involves multiple people
- At least a programmer and a user
- But usually multiple programmers, testers, etc.

* Any team effort requires mutual
understanding of the goal
- A specification
- Otherwise, tfeam members inevitably have different
goals in mind

Epeovijukd Oépata Avirmoing Aoyiopkod - Madnue 02 12/72

Specifications Change

+ Why?

+ Many software systems are truly "new”
- Differ from all that went before in some way

- Initial specification will change as problems are
discovered and solved

+ The world is changing
- What people want
- The components you build on (e.g., the OS version)

Epevvijakd Oépata Avirroing Aoyiopikod - Midnua 02 13/72

Software Specifications

+ Software specifications are usually
- in prose
- imprecise
- out of date

+ Current state of specification is not conducive
to automation
- Not consumable by tools
- Without a specification, there is nothing to check

Epsovirki Oépara Avimmoéng Aoyiopikod - Mionuo 02 14/72

Finite Resources

+ Organizations make trade-offs
- Not all goals can be achieved
- Because resources are finite

- $'s express relative costs among goals
- Goals that are hard to quantify pose a problem
- E.g., correctness, completeness

"We have 2 months, 5 programmers, and 2 testers. Here is a
priority list of features. A feature is finished when it passes
all of the tests for that feature; a programmer does not move

on to a new feature until all higher priority features are
finished or assigned to other programmers. We start now
and ship whatever features are finished in 60 days."

Epsovnrka Oépara Avimmuine Aoyiopukod - Madnpua 02 15/72

Summary of the State of the World

+ Software development today relies
overwhelmingly on the coder/tester model

- Typically half of the expense in developing a
software product is in testing
- And overwhelming, this testing is low tech

Epsvviuké Oépota Avinmgne Aoyiojukod - Mabnuo 02 16 /72

Some Testing Topics

+ Industry practices
- Code coverage
- Black-box and white-box testing
- State-of-the-art commercial tools

+ Testing theory
- Hardness results, testing finite state machines

+ Research problems in testing
- E.g., fault injection

Epeovijuixd Oépota Avimrugne Aoyiopikod - Mddnua 02 17/72

Dynamic Analysis Topics (Preliminary)

- Efficient tracing
* Code instrumentation
+ Deriving invariants from traces
* Monitoring long-running systems
+ Commercial tools

- E.g., Purify

Epeovijukd Oépata Avirmoing Aoyiopkod - Madnue 02 18/72

Specifications

+ Specifications are needed for any technique

- Why? Because no tool can divine what the
software is supposed to do.

+ Every method is a variation on:
- Get people to say something in two different ways

Specifications (Cont.)

+ Every technique relies on specifications
- If only the semantics of the language

+ The current state of specification is poor

* How can we get more specifications into

Testing Practice

- Check the two versions for consistency programs?
+ E.g., variables' types and their actual usage .
. - Partial specs
- E.g., test cases and the compiled code . ;
- Lightweight specs
Epeovnrid Opiara Avimmoens Aoyioukos - Madnua 02 19/72 Epevvnricd Oépara Avirroéng Aoyiopucos - Madnua 02 20/72
Reality

* Researchers have investigated many
approaches to improving software quality

+ But the world tests

+ >50% of the cost of software development is
testing

+ Testing is important

Epsvviuké Oépota Avinmgne Aoyiojukod - Mabnuo 02 22/72

Testing Topics

+ Purpose of testing

+ Widely-used practices
- Manual testing
- Automated festing
- Regression testing
- Nightly build
- Code coverage
- Bug trends
- Stress testing

Epeovijuixd Oépota Avimrugne Aoyiopikod - Mddnua 02 23/72

The Purpose of Testing

Two purposes:

1. Find bugs
- Find important bugs

2. Elucidate the specification

Epeovijukd Oépata Avirmoing Aoyiopkod - Madnue 02 24/72

Example

+ Test case
Add a child to Mary Brown's record

+ Version 1

- Check that Ms. Brown's # of children is one more
+ Version 2

- Also check Mr. Brown's # of children
+ Version 3

- Check that no one else’s child counts changed

Epevvijakd Oépata Avirroing Aoyiopikod - Midnua 02 25/72

Specifications

* Good testers clarify the specification
- This is creative, hard work

- There is no realistic hope that tools will ever
automate this

+ We bemoan the lack of specifications in
software

+ But testers are creating specifications

Epsovirki Oépara Avimmoéng Aoyiopikod - Mionuo 02 26/72

Manual Testing

- Test cases are lists of instructions
- “test scripts”

+ Someone manually executes the script
- Do each action, step-by-step
+ Click on “login”
+ Enter username and password
+ Click "OK"

- And manually records results

+ Low-tech, simple to implement

Manual Testing

* Manual testing is very widespread
- Probably not dominant, but very, very common
+ Why? Because
- Some tests can't be automated
+ Usability testing
- Some tests shouldn't be automated
+ Not worth the cost
+ There are also not-so-good reasons
- Not-so-good because innovation could remove them
- Testers aren't skilled enough to handle automation
- Automation tools are oo hard to use

+ Idea:
- Record manual test
- Play back on demand

+ This doesn't work as well as expected

Epeovijuixd Oépota Avimrugne Aoyiopikod - Mddnua 02 29/72

Epsovnrka Oépara Avimmuine Aoyiopukod - Madnpua 02 27/72 Epsvviuké Oépota Avinmgne Aoyiojukod - Mabnuo 02 28 /72
Automated Testing Fragility

+ Test recording is usually very fragile
- Breaks if environment changes anything
- E.g., location, background color of textbox

* More generally, automation tools cannot
generalize a test
- They literally record exactly what happened
- If anything changes, the test breaks

* A hidden strength of manual testing

- Because peoEIe are doing the fests, ability to adapt
tests to slightly modified situations is built-in

Epeovijukd Oépata Avirmoing Aoyiopkod - Madnue 02 30/72

Breaking Tests

+ When code evolves, tests break
- E.g., change the name of a dialog box

- Any test that depends on the name of that box
breaks

+ Maintaining tests is a lot of work
- Broken tests must be fixed: this is expensive
- Cost is proportional to the number of tests
- Implies that more tests is not necessarily better

Improved Automated Testing

+ Recorded tests are too low level
- E.g., every test contains the name of the dialog box

+ Need to abstract tests
- Replace dialog box string by variable name X
- Variable name X is maintained in one place

* So that when the dialog box name changes, only X needs to be
updated and all the tests work again

+ This is just structured programming
- Just as hard as any other system design
- Really, a way of making the specification more concise

Epeovnrid Opiara Avimmoens Aoyioukos - Madnua 02 31/72 Epevvnricd Oépara Avirroéng Aoyiopucos - Madnua 02 32/72
Back to Specifications Discussion

+ Specifying software is really hard

+ In formal methods community, much
bemoaning of level of detail required to
specify a system
- But this has nothing to do with formal methods

- Any specification approach must express the
details

+ The difficulty of automating testing is in the
same category

Epsovnrka Oépara Avimmuine Aoyiopukod - Madnpua 02 33 /72

+ Testers have two jobs
- Clarify the specification
- Find (important) bugs

+ Only the latter is subject to automation

* Helps explaih why there is so much manual
testing

Epsvviuké Oépota Avinmgne Aoyiojukod - Mabnuo 02 34/72

Regression Testing

+ Idea
- When you find a bug,
- Write a test that exhibits the bug,
- And always run that test when the code changes,
- So that the bug doesn't reappear

+ Without regression testing, it is surprising
how often old bugs reoccur

Epeovijuixd Oépota Avimrugne Aoyiopikod - Mddnua 02 35/72

Regression Testing (Cont.)

+ Regression testing ensures forward progress
- We never go back to old bugs

* Regression testing can be manual or automatic
- Ideally, run regressions after every change
- To detect problems as quickly as possible

* But, regression testing is expensive
- Limits how often it can be run in practice
- Reducing cost is a long-standing research problem

Epeovijukd Oépata Avirmoing Aoyiopkod - Madnue 02 36/72

Regression Testing (Cont.)

+ Note other tests (besides bug tests) can be
checked for regression

+ Ideally, entire suite of tests is rerunona
regular basis to assure old tests still work

Nightly Build

* Build and test the system regularly
- Every night

+ Why? Because it is easier to fix problems
earlier than later

- Easier to find the cause after one change than
after 1,000 changes

- Avoids new code from building on the buggy code

- Test is usually subset of full regression test
- “smoke test"
- Just make sure there is nothing horribly wrong

+ So far we have:
Measure changes regularly (nightly build)
Make monotonic progress (regression)

+ How do we know when we are done?
- Could keep going forever

+ But, testing can only find bugs, not prove their
absence
- We need a proxy for the absence of bugs

Epsovnrka Oépara Avimmuine Aoyiopukod - Madnpua 02 39 /72

Epeovnrid Opiara Avimmoens Aoyioukos - Madnua 02 37/72 Epevvnricd Oépara Avirroéng Aoyiopucos - Madnua 02 38/72
A Problem Typical Scenario

there serious bugs

“Can we ship? Or are
we haven't caught?

~
Decision
Maker

Programmer

"It passes
all tests!”

Epsvviuké Oépota Avinmgne Aoyiojukod - Mabnuo 02 40/ 72

Code Coverage

+ Idea

- Code that has never been executed likely has bugs

+ This leads to the notion of code coverage
- Divide a program into units (e.g., statements)
- Define the coverage of a test suite to be

of statements executed by suite
of statements

Epeovijuixd Oépota Avimrugne Aoyiopikod - Mddnua 02 41/72

Code Coverage (Cont.)

+ Code coverage has proven value
- It's a real metric, though far from perfect

+ But 100% coverage does not mean no bugs
- E.g., a bug visible after loop executes 1,025 times

- And 100% coverage is almost never achieved
- Ships happen with < 60% coverage
- High coverage may not even be desirable

+ May be better to devote more time fo tricky parts with
good coverage

Epeovijukd Oépata Avirmoing Aoyiopkod - Madnue 02 42/72

Using Code Coverage

+ Code coverage helps identify weak test suites

+ Tricky bits with low coverage are a danger
sign

+ Areas with low coverage suggest something is
missing in the test suite

Example

status = perform_operation();
if (status == FATAL_ERROR)
exit(3);

+ Coverage says the exit is never taken
+ Straightforward to fix
- Add a case with a fatal error

- But are there other error conditions that are
not checked in the code?

+ Code coverage can't complain about missing
code

- The case not handled

+ But coverage can hint at missing cases

- Areas of poor coverage = areas where not enough
thought has been given to specification

Epsovnrka Oépara Avimmuine Aoyiopukod - Madnpua 02 45 /72

Epeovnrid Opiara Avimmoens Aoyioukos - Madnua 02 43/72 Epevvnricd Oépara Avirroéng Aoyiopucos - Madnua 02 44/72
The Lesson Bug Trends

+ Idea: Measure rate at which new bugs are
found

- Rational: When this flattens out it means
1. The cost/bug found is increasing dramatically
2. There aren't many bugs left to find

+ Assumes testing resources are well-deployed
- We aren't overlooking any part of the code
+ Assumes bugs can be fixed

Epsvviuké Oépota Avinmgne Aoyiojukod - Mabnuo 02 46/ 72

Stress Testing

+ Push system into extreme situations
- And see if it still works...

+ Stress
- Performance
- Feed data at very high or very low rates
- Interfaces
+ Replace APIs with badly behaved stubs
- Internal structures
+ Works for any size array? Try sizes O and 1
- Resources
+ Set memory artificially low
- Same for # of file descriptors, network connections, etc.

Epeovijuixd Oépota Avimrugne Aoyiopikod - Mddnua 02 47/72

Stress Testing (Cont.)

+ Stress testing will find many obscure bugs
- Explores the corner cases of the design

+ Some may not be worth fixing
- As unlikely in practice

+ A corner case now is tomorrow's common case
- Data races, data sizes always increasing
- Software is often stress tested

Epeovijukd Oépata Avirmoing Aoyiopkod - Madnue 02 48/72

The Big Picture

+ Testing practice has grown by trial-and-error
- Many, many errors

+ Standard practice
- Measure progress often (nightly builds)
- Make forward progress (regression testing)

What Can We Learn From Testing Research?

+ Observations

- A huge amount of labor goes into testing
+ >50% of project investment
- Much of this labor just ferrets out the spec

+ Question: Can we redirect this effort into
more useful specifications?

- Stopping condition (coverage, bug trends) ;
- More useful for tools, that is
Epevvijakd Oépata Avirroing Aoyiopikod - Midnua 02 49172 Epsovirki Oépara Avimmoéng Aoyiopikod - Mionuo 02 50/72
Overview

Testing Research

+ Testing research has a long history
- At least fo the 1960's

* Much work is focused on metrics
- Assigning numbers to programs
- Assigning numbers to fest suites
- Heavily influenced by industry practice

* More recent work focuses on deeper analysis
- Semantic analysis, in the sense we understand it

Epsvviuké Oépota Avinmgne Aoyiojukod - Mabnuo 02 52/72

Random Testing

+ About % of Unix utilities crash when fed
random input strings
- Up 1o 100,000 characters

+ What does this say about testing?

+ What does this say about Unix?

Epeovijuixd Oépota Avimrugne Aoyiopikod - Mddnua 02 53/72

What it Says About Testing

- Randomization is a highly effective technique
- And we use very little of it in software

+ “A random walk through the state space”

+ To say anything rigorous, must be able to
characterize the distribution of inputs
- Easy for string utilities
- Harder for systems with more arcane input
« E.g., parsers for context-free grammars

Epeovijukd Oépata Avirmoing Aoyiopkod - Madnue 02 54/72

What it Says About Unix

+ What sort of bugs did they find?
- Buffer overruns
- Format string errors
- Wild pointers/array out of bounds
- Sighed/unsigned characters
- Failure to handle return codes
- Race conditions

* Nearly all of these are problems with C!
- Would disappear in Java
- Exceptions are races & return codes

Epevvijakd Oépata Avirroing Aoyiopikod - Midnua 02 55/72

One Interesting Bug

csh 10%8f

+ lis the history lookup operator
- No command beginning with 0%8f

- csh passes an error "0%8f: Not found" to an
error printing routine

- Which prints it with printf()

Epsovirki Oépara Avimmoéng Aoyiopikod - Mionuo 02 56/72

Efficient Regression Testing

+ Problem: Regression testing is expensive

+ Observation: Changes don't affect every test
- And tests that couldn't change need not be run

+ Idea: Use a conservative static analysis to

The Algorithm

Two pieces:

1. Run the tests and record for each basic block
which tests reach that block

2. After modifications, do a DFS of the new control
flow graph. Wherever it differs from the original
control flow graph, run all tests that reach that

prune test suite point
Eez:uvnw(d Oépata Avﬁmutnﬁ Aoz\c IKOD - Mdﬂv] o 02 57/72 EEE\M]nui Ofpata Avﬂ'um:“\]c Aoyiopikon - Mﬁzen 02 58/72
Example Experience
Label each node + This works

of the control
flow graph with
the set of tests
that reach it.

When a
statement is
modified, rerun
Jjust the tests
reaching that
statement.

Epevvnrika Oépoto Avimroéne Aoyiopikod - MaOnua 02 59/72

- And it works better on larger programs
- # of test cases to rerun reduced by > 90%

+ Total cost less than cost of running all tests
- Total cost = cost of tests run + cost of tool

+ Why not use this?

Epeovijukd Oépata Avirmoing Aoyiopkod - Madnue 02 60/72

10

What is a Good Test?

+ We're implementing a function F on domain D

* A test set T c D is reliable if for all programs P
(vteT.P(¥)=F()= (vt eD. P(t)= F(t))

+ Says that a good test set is one that implies
the program meets its specification

Good News/Bad News

+ Good News

- There are interesting examples of reliable test
sets

- Example: A function that sorts N numbers using
comparisons sorts correctly iff it sorts all inputs
consisting of 0,1 correctly

- This is a finite reliable test set

+ Bad News

- There is no effective method for generating finite
reliable test sets

- It's clear that reliable test sets must be
impossible to compute in general

+ But most programs are not diagonalizing
Turing machines...

+ It ought to be possible to characterize finite
reliable test sets for certain classes of
programs

Epsovnrka Oépara Avimmuine Aoyiopukod - Madnpua 02 63 /72

Epevvijakd Oépata Avirroing Aoyiopikod - Midnua 02 61/72 Epsovirki Oépara Avimmoéng Aoyiopikod - Mionuo 02 62/72
An Aside What is a Good Test?

+ We're implementing a function F on domain D
* A test set T D is reliable if for all programs P
(VteT.P(t)=F)= (vt eD.P(t)=F(t))

+ equivalently, for all programs P
@1teD.PM)2F() =3t e T.P(¥) % F(t))

+ But we can't afford to quantify over all
programs . . .

Epsvviuké Oépota Avinmgne Aoyiojukod - Mabnuo 02 64/ 72

From Infinite to Finite

-+ We need to cut down the size of the problem
- Check reliability w.r.t. a smaller set of programs

+ Idea: Just check a finite number of
(systematic) variations on the program
- E.g., replace x>0 by x <0
- Replace I by I+1,I-1

+ This is mutation analysis

Epeovijuixd Oépota Avimrugne Aoyiopikod - Mddnua 02 65/72

Mutation Analysis

* Modify (mutate) each statement in the
program in finitely many different ways

+ Each modification is one mutant

+ Check for adequacy w.r.t. the set of mutants

- Find a set of test cases that distinguishes the
program from the mutants

Epeovijukd Oépata Avirmoing Aoyiopkod - Madnue 02 66/ 72

11

What Justifies This?

+ The “"competent programmer assumption”
The program is close to right to begin with

+ It makes the infinite finite

We will inevitably do this anyway, at least here it is
clear what we are doing

The Plan

* Generate mutants of program P

* Generate tests
- By some process

+ For each test t

- For each mutant M
« If M(T) = P(t) mark M as Ailled

+ If the tests kill all mutants, the tests are

* This is dreadfully slow
+ Lots of mutants
+ Lots of fests

* Running each mutant on each test is expensive

+ But early efforts more or less did exactly this

reliable
Epevvijakd Oépata Avirroing Aoyiopikod - Midnua 02 67/72 Epsovirki Oépara Avimmoéng Aoyiopikod - Mionuo 02 68/72
The Problem Better Algorithms

+ Observation: Mutants are nearly the same as
the original program

+ Idea: Compile one program that incorporates
and checks all of the mutations simultaneously
- A so-called meta-mutant

+ Weak mutation

- Check only that mutant produces different state
after mutation, not different final output

+ Constructing a metamutant for weak mutation
is straightforward

+ A statement has a set of mutated statements
- With any updates done to fresh variables
X:i=Y«l X;=Y«2 Xy,i=Y»1
- After statement, check to see if values differ
X == X, X ==X,

Epeovijuixd Oépota Avimrugne Aoyiopikod - Mddnua 02 71/72

Eez:\)vnw(d Ofpato. Avdmutnﬁ Aoz\c KoU - Md('h] 1o 02 69 /72 EEE\M]IN‘A Ofpota Avﬂ'um:“\]c Aoylopkon - Mden 0 02 70 /72
Metamutant with Weak Mutation Comments

* A metamutant for weak mutation should be
quite practical
- Constant factor slowdown over original program

+ If test suite fails to kill all mutants, then
(maybe) it is inadequate

Epeovijukd Oépata Avirmoing Aoyiopkod - Madnue 02 72/72

12

