Epeuvnrika Oépata Avantugng AoyiopikoU

ZUOvoyn MaBnparog (1)

1. Introduction & Course Overview
How software is built & software defects
Dataflow analysis fundamentals
2. Testing
Testing practice
Coverage
Automatic test generation
3. Debugging
Debuggers
Debugging without debuggers
Simplifying failure inducing input
4. Runtime Monitoring
Detecting data races Eraser
Virtual machine simulation
Fault isolation Valgrind

Korat, JUnit

Delta debugging

ZUvoyn MaBnuarog (2)

5. Static Analysis
- Basic principles
- Dataflow analysis

6. Static Bug Detection I
- Heuristics-based methods

Z0voyn MaOnuaroc (3)

9. Extended Static Checking

ESC/Java, Houdini, ESC/Java2, ESC/Haskell
10. Model Checking

Slam, BLAST
11. Memory Management & Safety

- Annotations & dataflow analysis Lint, LClint - Regions: an alternative to garbage collection
7. Static Bug Detection IT - Cyclone
- BugPatterns FindBugs 12. Fixing C
- Scalable analyses Prefast, Prefix - CCured
8. Static Bug Detection IIT 13. Fixing Java
- Metacompilation Metal - FindBugs
- Statistical ranking - Type-based race detection for Java
- Dynamic atomicity checker Atomizer
o E Mo 0l a N

French Guyana, June 4, 1996
$800 million software failure

|

Mars, July 4, 1997
Lost contact due to real-time priority inversion bug

Mars Climate Orbiter

- The 125 million dollar Mars Climate Orbiter is assumed
lost by officials at NASA. The failure responsible for
loss of the orbiter is attributed to a failure of NASA's
system engineer process. The process did not specify
the system of measurement to be used on the project.
As a result, one of the development teams used Imperial
measurement while the other used the metric system of
measurement. When parameters from one module were
passed to another during orbit navigation correct, no
conversion was performed, resulting in the loss of the
craft.

400 horses
100 microprocessors

The Blue Screen

$4 billion development effor
> B50% system integration & validation cost

e STOP: 8>BBBABE19 (B>BBBABAGA, BXCABEAFFA, BXFFFFEFD4, 8:CBBABAAE Y
3AD_POOL_HEADER

SPUID: GenuineIntel 5.2.c irgl:1f SYSUER 8xfB888565

DateStmp — Hame DateStnp —
2 ntoskenl .exe
sus

iass.sus
IDEGPORT .55

31f£7alba — mup.sus fedda®ss 32031abe —

dword dump Build [13811

80143068 56814308 8014 £EIFFE00 98078102

80144088 88144888 ffiff080 cA30AOLA DAAAAAA1

80122088 £8803fe® f@3Beecd el33cdbd el3dcddd

803823f8 BBEEB23c 00ABON34 BOOAAEEN DAAEEABE ntoskenl lexe

testart and set the recouery options in the system control pansl
e the /CRASHDEBLG sustem start option.

G PRINTTHIS)

@NNI.COITI. oty cElickabilty

Spread of buggy software raises new questions

NEW YORK (AP} - When his dishwasher acis up and won't step beeping, Jelf Seigle tarus it off asd thes on, jwt 31 be does when bis
computer craskes. Same wiih the evereise mackises 31 his gym and his €1 playes

"Now I think of resetting appliances, not just computers.” says Seigle, a software developer in
Vienma, Virginia

Malfunctions ¢
now that softw

ed by bizarre
ontrols eve

d frustrating glitches are becoming harder and harder to escape
ng from stoves to phones, trains, cars and power plants

-A poorly programmed ground-based altiude waming system was panly responsible for the 1997
\mnn Air erash in Guam that killed 228 people.

=--Faulty software in anti-lock brakes forced the recall of 39,000 trucks and tractors and 6,000 school
buses in 2000

--The $165 million Mars Polar Lander probe was destroyed in its final descent 1o the planet in 1999,
probably because its software shut the engines off 100 feet above the surface.

Economic Impact

NIST study
- On CNN.com - April 27, 2003

ioned by the National Instinsie of Standards and [Lthk\llr'\ found ths
Y 3 v, or about 0.6 percent of the gross

domestic product. More than half the costs are bomne by software users, the rest h\ IJ\\\]urkm and

vendon

http://www.nist.gov/director/prog-ofc/report02-3.pdf

Course Overview

Model Checking Program Analysis

finite-state optimizing - figure out what properties a program satisfies
hardware compilers
‘ l Validation
- does a program satisfy a particular property or
Software “specification”
Testing Validation heorem Proving
unit, in_tegruﬁon, expensive proofs
purify, etc of small programs
(automation)
Type Systems
small theorems
about big programs.
values (behaviors)
- S I ! a Mg 0] 16

Analysis vs. Validation

Analysis

Software Validation

Program Specification

) I 4

Validation Tool| Y

VQ

odl

Software Validation

Program) Specification

Y /

Validation Tool

Waterfall Model

Software Validation

Requirements
definition

System and
software design

Can have formal artifacts
and validation at multiple
stages during development

Program (Specification

Implementation
and unit testing
Integration and
system testing

Operation and

\ 7

Validation Tool {(V)}
-3
o o

Specifications

- Safety
- something "bad" will never happen
- finds most bugs
+ Liveness
- something “good" will eventually happen
- (we don't know when)

For Sequential Programs

+ Safety

- the program will never produce a wrong result
+ “partial correctness”

+ Liveness

- the program will produce a result
+ “fermination”

Example Specifications

Basic specifications
- no null dereference
- no bounds errors
- ho segmentation faults
Resource management
- no memory leaks

Example Specifications

+ Data invariants

- shape properties (L is an acyclic list)

* Security

- integrity, confidentiality

+ API Usage rules

Concurrency - files
- no race conditions - UNIX sockets
- no deadlock
oy RN T Ol 23 £ =il il

Software Validation

Program Specification

) I 4

Validation Tool v

Ag

1@5
=T
-3

)

Undecidability

- Does a program P satisfy a specification S ?

- everything interesting about infinite-state programs

is undecidable
+ consequence of halting problem
- no sound, complete, ferminating algorithm

Avoiding Undecidability

- Finite state systems
- model checking
- automatic
- effective for small systems
+ Miss errors (unsound)
- testing, bounded model checking
- test coverage problem
+ False alarms (incomplete)
- program analysis, type systems
- only consider certain proofs

Program Analysis Fundamentals

Uses of Program Analysis

+ Historically: Optimizing compilers

* More recently: Finding bugs

Culture

- Emphasis on low-complexity techniques

- Because of emphasis on usage in tools

- High-complexity techniques also studied, but
often don't survive

- Emphasis on complete automation

+ Driven by language features

- Particular languages and features give rise to
their own sub-disciplines

Introduction to Dataflow Analysis

Control-Flow Graphs

x i=a+b;

y i=a*b;
while y > a + b {
a:iza+1;
xi=a+b

Notation

s is a statement

succ(s) = { successor statements of s}
pred(s) = { predecessor statements of s}
write(s) = { variables written by s}
read(s) ={ variables read by s}

Note: In literature write = kill and read = gen

Available Expressions

For each program point p,
finds which expressions

must have already been
computed, and not later

modified, on all paths to p.

a+b is
available

Optimization: Where here

available, expressions
need not be
recomputed.

Dataflow Equations

%] if pred(s)=J
A,(s) = (N As(s) otherwise

s'epred(s)

A, (5)=(A,(s5)—{a e S| write(s) "V (a) + D})
s |if write(s) read(s) = @}

Liveness Analysis

For each program
point p, finds which of
the variables defined
at that point are used
on some execution
path?

X is not
live here

Optimization: If a
variable is not live,
there is no need to keep
it in a register.

Dataflow Equations

L, (8) = (L, (5)—write(s)) L read(s)

%) if succ(s)=2
U £4.(s) otherwise

s'esuce(s)

éuf(s) =

Available Expressions Again

a if pred(s)=92
(1 Aws(s) otherwise

s'epred(s)

A’n(s) =

A (8)=(A,(5)-{a e S| write(s) "V (a) = DY)
u{s | write(s) read(s) = @}

Transtfer function:

) - 49) -G VG

Must analysis: property holds on all paths
Forwards analysis: from inputs to outputs

4l

Live Variables Again

Ly(8) = (Ly(5) —write(s)) read(s)

%) if succ(s)=30
U L4,.(s) otherwise

s'esucc(s)

ém‘ (5) =

Live Variables: Schematic

Transfer function:

Gs) = () -G VG,

May analysis: property holds on some path
Backwards analysis: from outputs to inputs

4

Very Busy Expressions
* An expression e is very busy at a program

point p if every path from p must evaluate
e before any variable in e is redefined

+ Optimization: hoisting expressions

* A must-analysis
+ A backwards analysis

Reaching Definitions

+ For a program point p, which assignments
made on paths reaching p have not been
overwritten

+ Connects definitions with uses (use-def
chains)

* A may-analysis
+ A forwards analysis

One Cut at the Dataflow Design

Space
May Must
Forwards Reaching Available
definitions expressions
Backwards Live variables |Very busy
expressions

The Literature

* Vast literature of dataflow analyses

+ 90+% can be described by
- Forwards or backwards
- May or must

- Some oddballs, but not many
- Bidirectional analyses

Flow Sensitivity

+ Flow sensitive analyses
- The order of statements matters

- Need a control flow graph
+ Or transition system,

* Flow insensitive analyses
- The order of statements doesn't matter

- Analysis is the same regardless of statement
order

Example Flow Insensitive Analysis

* What variables does a program fragment
modify?

G(x=e)={x}
6(s.5,)=6(s)v6(s,)

* Note 5(5],’52) = 5(52,’5])

49

The Advantage

+ Flow-sensitive analyses require a model

of program state at each program point
- E.g., liveness analysis, reaching definitions, ...

* Flow-insensitive analyses require only a

single global state
- E.g., for G, the set of all variables modified

Notes on Flow Sensitivity

* Flow insensitive analyses seem weak, but:

- Flow sensitive analyses are hard to scale
to very large programs
- Additional cost: state size X # of program
points

- Beyond 1000's of lines of code, only flow
insensitive analyses have been shown to
scale

Context-Sensitive Analysis

* What about analyzing across procedure

boundaries?

Def f(x)..}
Def g(yX..f(a)..}
Def h(z)X..f(b)..}

+ Goal: Specialize analysis of f to take

advantage of
+ fis called with a by g
+ fis called with b by h

Control-Flow Graphs Again Example
+ How do we extend control-flow graphs to - Edges from

procedures?

- Idea: Model procedure call f(a) by:
- Edge from point before call to entry of f
- Edge from exit(s) of f to point after call

- before f(a) to entry of
f

- Exit of f to after f(a)
- Before f(b) foentryof | 9WH.f@.} | [hGX.f(6).}]
:

- Exit of f to after f(b)

FL-)

+ Has the correct flows

Example

- Edges from
- before f(a) to entry of
f

- Exit of f fo after f(a)
- Before f(b) toentry of |9N-F@.}] [h(@).f(b).} |
f

- Exit of f to after f(b)

for g

+ Has the correct flows

Example

-+ Edges from

- before f(a) to entry of
f

- Exit of f to after f(a)

- Before f(b) foentry of |9M-F@.}] [h2).f(b).} |
f

- Exit of f to after f(b)

for h

+ So-called “infeasible

Example

+ But also has flows we

don't want

- One path captures a call
to g returning at h!

lgWf@.3] [h@.fb).}]

paths”

+ Must distinguish calls
to f in different
contexts

Review of Terminology

* Must vs. May

* Forwards vs. Backwards

* Flow-sensitive vs. Flow-insensitive

+ Context-sensitive vs. Context-insensitive

Where is Dataflow Analysis
Useful?

- Best for flow-sensitive, context-
insensitive problems on small pieces of
code

- E.g., the examples we've seen and many others

- Extremely efficient algorithms are known

- Use different representation than control-flow
graph, but not fundamentally different

- More on this in a minute . . .

Where is Dataflow Analysis
Weak?

* Lots of places

10

Data Structures

* Not good at analyzing data structures

+ Works well for atomic values
- Labels, constants, variable names

* Not easily extended to arrays, lists,
trees, etc.
- Work on shape analysis

The Heap

* Good at analyzing flow of values in local

variables

* No notion of the heap in traditional

dataflow applications

+ In general, very hard to model

anonymous values accurately
- Aliasing
- The "strong update"” problem

Context Sensitivity

+ Standard dataflow techniques for handling
context sensitivity don't scale well

* Brittle under common program edits

Flow Sensitivity (Beyond
Procedures)

* Flow sensitive analyses are standard for

analyzing single procedures

+ Not used (or not aware of uses) for

whole programs
- Too expensive

The Call Graph

- Dataflow analysis requires a call graph
- Or something close

- Inadequate for higher-order programs
- First class functions

- Object-oriented languages with dynamic
dispatch

- Call-graph hinders algorithmic efficiency

- Desire to keep executable specification is
limiting

Forwards vs. Backwards

- Restriction to forwards/backwards

reachability
- Very constraining

- Many important problems not easy to fit into
this mold

11

