
Haskell: From Basic to Advanced

Part 2 – Type Classes, Laziness, IO, Modules



• In the types schemes we have seen, the type 
variables were universally quantified, e.g.

• In other words, the code of ++ or map could 
assume nothing about the corresponding input

• What is the (principal) type of qsort?
– we want it to work on any list whose elements are 

comparable
– but nothing else

• The solution: qualified types

map :: (a -> b) -> [a] -> [b]

Qualified types

++ :: [a] -> [a] -> [a]



• The type variable a is qualified with the type class Ord
• qsort works only with any list whose elements are 

instances of the Ord type class

-- File: qsort2.hs
qsort [] = []
qsort (p:xs) =

qsort lt ++ [p] ++ qsort ge
where lt = [x | x <- xs, x < p]

ge = [x | x <- xs, x >= p]

Prelude> :l qsort2.hs
[1 of 1] Compiling Main        ( qsort2.hs, interpreted )
Ok, modules loaded: Main.
*Main> :t qsort
qsort :: Ord a => [a] -> [a]

The type of qsort

Note: A type variable can be qualified with more than one type class



class Ord a where
(>)  :: a -> a -> Bool
(<=) :: a -> a -> Bool

instance Ord Student where
x > y = better x y
x <= y = not (better x y)

Note: The actual Ord class in the standard Prelude defines more functions than these two

defines a 
type class

named Ord

data Student = Student Name Score
type Name = String
type Score = Integer

better :: Student -> Student -> Bool
better (Student n1 s1) (Student n2 s2) = s1 > s2

makes 
Student

an instance
of Ord

Type classes and instances

Note: we can use the same 
name for a new data

declaration and a constructor



• Haskell’s type class mechanism has some 
parallels to Java’s interface classes

• Ad-hoc polymorphism (also called overloading)
– for example, the > and <= operators are overloaded
– the instance declarations control how the operators 

are implemented for a given type

Some standard type classes
Ord used for totally ordered data types
Show allow data types to be printed as strings
Eq used for data types supporting equality
Num functionality common to all kinds of numbers

Type classes



data Bool = True | False

class Eq a where
(==) :: a -> a -> Bool
(/=) :: a -> a -> Bool

instance Eq Bool where
True == True = True
False == False = True
_ == _ = False
x /= y = not (x == y)

Example: equality on Booleans



Predefined classes and instances



• Purely functional means that evaluation has no 
side-effects
– A function maps an input to an output value and does 

nothing else (i.e., is a “real mathematical function”)

• Referential transparency:
“equals can be substituted with equals”

We can disregard evaluation order and duplication of evaluation

Easier for the programmer (and compiler!) to reason about code

f x + f x let y = f x in y + yis always 
same as

Referential transparency



• We get a “correct” answer immediately
• Haskell is lazy: computes a value only when needed

– none of the elements in the list are computed in this example
– functions with undefined arguments might still return answers

• Lazy evaluation can be
– efficient since it evaluates a value at most once
– surprising since evaluation order is not “the expected”

Lazy evaluation
-- a non-terminating function
loop x = loop x

Prelude> :l loop
[1 of 1] Compiling Main             ( loop.hs, interpreted )
Ok, modules loaded: Main.
*Main> length [fac 42,loop 42,fib 42]
3



• Since we do not evaluate a value until it is asked for, 
there is no harm in defining and manipulating infinite lists

• Avoid certain operations such as printing or asking for 
the length of these lists...

Lazy and infinite lists

from n = n : from (n + 1)

squares = map (\x -> x * x) (from 0)

even_squares = filter even squares

odd_squares = [x | x <- squares, odd x]

Prelude> :l squares
[1 of 1] Compiling Main             ( squares.hs, interpreted )
Ok, modules loaded: Main.
*Main> take 13 even_squares
[0,4,16,36,64,100,144,196,256,324,400,484,576]
*Main> take 13 odd_squares
[1,9,25,49,81,121,169,225,289,361,441,529,625]



• The (infinite) list of all Fibonacci numbers

Programming with infinite lists

fibs = 0 : 1 : sumlists fibs (tail fibs)
where sumlists (x:xs) (y:ys) = (x + y) : sumlists xs ys

Prelude> :l fibs
[1 of 1] Compiling Main             ( fibs.hs, interpreted )
Ok, modules loaded: Main.
*Main> take 15 fibs
[0,1,1,2,3,5,8,13,21,34,55,89,144,233,377]
*Main> take 15 (filter odd fibs)
[1,1,3,5,13,21,55,89,233,377,987,1597,4181,6765,17711]
*Main> take 13 (filter even fibs)
[0,2,8,34,144,610,2584,10946,46368,196418,832040,3524578,14930352]

• Two more ways of defining the list of Fibonacci 
numbers using variants of map and zip

fibs2 = 0 : 1 : map2 (+) fibs2 (tail fibs2)
where map2 f xs ys = [f x y | (x,y) <- zip xs ys]

-- the version above using a library function
fibs3 = 0 : 1 : zipWith (+) fibs3 (tail fibs3)



[n..m] shorthand for a list of integers from n to m
(inclusive)

[n..] shorthand for a list of integers from n upwards

We can easily define the list of all prime numbers
primes = sieve [2..]
where sieve (p:ns) = p : sieve [n | n <- ns, n `mod` p /= 0]

Prelude> :l primes
[1 of 1] Compiling Main        ( primes.hs, interpreted )
Ok, modules loaded: Main.
*Main> take 13 primes
[2,3,5,7,11,13,17,19,23,29,31,37,41]

Lazy and infinite lists



• A producer of an infinite stream of integers:

• A consumer of an infinite stream of integers:

fib  = 0 : fib1
fib1 = 1 : fib2
fib2 = add fib fib1

where add (x:xs) (y:ys) = (x+y) : add xs ys

consumer stream n = 
if n == 1 then show head
else show head ++ ", " ++ consumer tail (n-1)
where head:tail = stream

consumer fib 10 ⇒ ... ⇒ "0, 1, 1, 2, 3, 5, 8, 13, 21, 34"

Infinite streams



• More difficult to reason about performance
– especially about space consumption

• Runtime overhead

Drawbacks of lazy evaluation

The five symptoms
of laziness:

1.



• We really need side-effects in practice!
– I/O and communication with the outside world (user)
– exceptions
– mutable state
– keep persistent state (on disk)
– ...

• How can such imperative features be   
incorporated in a purely functional language? 

Side-effects in a pure language



• When doing I/O there are some desired properties
– It should be done. Once.
– I/O statements should be handled in sequence

• Enter the world of Monads* which
– encapsulate the state, controlling accesses to it
– effectively model computation (not only sequential)
– clearly separate pure functional parts from the impure

Doing I/O and handling state

* A notion and terminology adopted from category theory



• Action: a special kind of value
– e.g. reading from a keyboard or writing to a file
– must be ordered in a well-defined manner for program 

execution to be meaningful
• Command: expression that evaluates to an action

• IO T: a type of command that yields a value of type T
– getLine :: IO String

– putStr :: String -> IO ()

• Sequencing IO operations (the bind operator):
(>>=) :: IO a -> (a -> IO b) -> IO b

The IO type class

current state second action new state



• First read a string from input, then write a string to 
output

• An alternative, more convenient syntax:

• This looks very “imperative”, but all side-effects 
are controlled via the IO type class!
– IO is merely an instance of the more general type class Monad

– Another application of Monad is simulating mutable state

getLine >>= \s -> putStr ("Simon says: " ++ s)

do s <- getLine
putStr ("Simon says: " ++ s)

(>>=) :: Monad m => m a -> (a -> m b) -> m b

Example: command sequencing



• We will employ the following functions:

• The call readFile "my_file" is not a String, 
and no String value can be extracted from it

• But it can be used as part of a more complex 
sequence of instructions to compute a String

Example: copy a file

Prelude> :info writeFile
writeFile :: FilePath -> String -> IO () -- Defined in `System.IO’
Prelude> :i FilePath
type FilePath = String -- Defined in `GHC.IO’
Prelude> :i readFile
readFile :: FilePath -> IO String -- Defined in `System.IO’

copyFile fromF toF =
do contents <- readFile fromF

writeFile toF contents



• As we saw, Haskell introduces a do notation for working 
with monads, i.e. introduces sequences of computation 
with an implicit state

• An “assignment”
“expands” to

• A monad also requires the return operation for 
returning a value (or introducing it into the monad)

• There is also a sequencing operation that does not take 
care of the value returned from the previous operation
Can be defined in terms of bind: 

Monads

do expr1; expr2; ...

do x <- action1; action2

action1 >>= \x -> action2

x >> y = x >>= (\_ -> y)



• Modularization features provide
– encapsulation
– reuse
– abstraction
(separation of name spaces and information hiding)

• A module requires and provides functionality

• It is possible to export everything by omitting the export list

module Calculator (Expr,eval,gui) where
import Math
import Graphics
...

Modules



• We need not export all constructors of a type
• Good for writing ADTs: supports hiding representation

• Here we export only the type and abstract operations

module AbsList (AbsList, empty, isempty,
cons, append, first, rest) where

data AbsList a = Empty
| Cons a (AbsList a)
| App (AbsList a) (AbsList a)

empty = Empty
cons x l = Cons x l
append l1 l2 = App l1 l2
...

Modules: selective export



Modules: import

module MyMod (...) where
import Racket (cons, null, append)
import qualified Erlang (send, receive, spawn)

foo pid msg queue = Erlang.send pid (cons msg queue)

• We can use import to use entries from another module

• Unqualified import allows to use exported entries as is
+ shorter symbols
− risk of name collision
− not clear which symbols are internal or external

• Qualified import means we need to include module name
− longer symbols
+ no risk of name collision
+ easy distinction of external symbols



Recall the qsort function definition

We can avoid the two traversals of the list by 
using an appropriate function from the List library 

A better quick sort program

import Data.List (partition)

qsort [] = []
qsort (p:xs) = qsort lt ++ [p] ++ qsort ge

where (lt,ge) = partition (<p) xs

qsort [] = []
qsort (p:xs) = qsort lt ++ [p] ++ qsort ge

where lt = [x | x <- xs, x < p]
ge = [x | x <- xs, x >= p]



• Write a module defining the following function:

• sortFile file1 file2 reads the lines of file1, 
sorts them, and writes the result to file2

• The following functions may come handy

Exercise: sort a file (with its solution)

sortFile :: FilePath -> FilePath -> IO ()

lines   :: String -> [String]
unlines :: [String] -> String

module FileSorter (sortFile) where
import Data.List (sort) -- or use our qsort

sortFile f1 f2 =
do str <- readFile f1

writeFile f2 ((unlines . sort . lines) str)



• Higher-order functions, polymorphic functions
and parameterized types are useful for building 
abstractions

• Type classes and modules are useful 
mechanisms for structuring programs

• Lazy evaluation allows programming with infinite 
data structures

• Haskell is a purely functional language that can 
avoid redundant and repeated computations

• Using monads, we can control side-effects in a 
purely functional language

Summary so far


