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Concurrent Haskell

• Recap:

– concurrent programming is about threads of control

– concurrency is necessary for dealing with multiple 
sources of input/output:

• network connections

• GUI, user input

• database connections

– threads of control let you handle multiple 
input/output sources in a modular way: the code for 
each source is written separately



Summary

• In this part of the course we’re going to cover

– Basic concurrency

• forkIO

• MVars

– Asynchronous exceptions

• cancellation

• timeout

– Software Transactional Memory



Forking threads

• creates a new thread to run the IO ()

• new thread runs “at the same time” as the 
current thread and other threads

forkIO :: IO () -> IO ThreadId



Interleaving example

$ ghc fork.hs

[1 of 1] Compiling Main             ( fork.hs, fork.o )

Linking fork ...

$ ./fork | tail -c 300

AAAAAAAAABABABABABABABABABABABABABABABABABABABABABABAB

ABABABABABABABABABABABABABABABABABABABABABABABABABABAB

ABABABABABABABABABABABABABABABABABABABABABABABABABABAB

ABABABABABABABABABABABABABABABABABABABABABABABABABABAB 

$ 

forkIO :: IO () -> ThreadId

forever :: m a -> m a
putChar :: Char -> IO ()
threadDelay :: Int -> IO ()

import Control.Concurrent
import Control.Monad
import System.IO

main = do
hSetBuffering stdout NoBuffering
forkIO (forever (putChar 'A'))
forkIO (forever (putChar 'B'))
threadDelay (10^6)



ThreadId

– what can you do with a ThreadId?
• check status with GHC.Conc.threadStatus (useful for 

debugging):

– Also: 
• compare for equality
• kill / send exceptions (later...)

forkIO :: IO () -> IO ThreadId

> import Control.Concurrent

> do { t <- forkIO (threadDelay (10^6)); GHC.Conc.threadStatus t }

ThreadRunning

> do { t <- forkIO (threadDelay (10^6)); yield; GHC.Conc.threadStatus t }

ThreadBlocked BlockedOnMVar



A note about performance

• GHC’s threads are lightweight

• 10^6 threads requires 1.5Gb – 1.5k/thread
– most of that is stack space, which grows/shrinks on 

demand

• cheap threads makes it feasible to use them 
liberally, e.g. one thread per client in a server

> ./Main 1000000 1 +RTS -s

Creating pipeline with 1000000 processes in it.

Pumping a single message through the pipeline.

Pumping a 1 messages through the pipeline.

n   create    pump1    pump2 create/n  pump1/n  pump2/n

s        s s us       us us

1000000    5.980    1.770    1.770     5.98     1.77     1.77



Communication: MVars

• MVar is the basic communication primitive in 
Haskell. data MVar a  -- abstract

newEmptyMVar :: IO (MVar a)
takeMVar     :: MVar a -> IO a
putMVar      :: MVar a -> a -> IO ()

x

Empty MVar

takeMVar takeMVar

Blocked threads

putMVar x

x <- takeMVar

• And conversely: putMVar blocks when the MVar
is full.



Example: overlapping I/O

• One common use for concurrency is to overlap 
multiple I/O operations
– overlapping I/O reduces latencies, and allows better 

use of resources

• overlapping I/O is easy with threads: just do each 
I/O in a separate thread
– the runtime takes care of making this efficient

• e.g. downloading two web pages

sequential I/O overlapped I/O



Downloading URLs

getURL :: String -> IO String

do
m1 <- newEmptyMVar
m2 <- newEmptyMVar

forkIO $ do
r <- getURL "http://www.wikipedia.org/wiki/Shovel"
putMVar m1 r

forkIO $ do
r <- getURL "http://www.wikipedia.org/wiki/Spade"
putMVar m2 r

r1 <- takeMVar m1
r2 <- takeMVar m2
return (r1,r2)



Abstract the common pattern

• Fork a new thread to execute an IO action, 
and later wait for the result

newtype Async a = Async (MVar a)

async :: IO a -> IO (Async a)
async io = do
m <- newEmptyMVar
forkIO $ do r <- io; putMVar m r
return (Async m)

wait :: Async a -> IO a
wait (Async m) = readMVar m readMVar :: MVar a -> IO a

readMVar m = do
a <- takeMVar m
putMVar m a
return a



Using Async....

do
a1 <- async $ getURL "http://www.wikipedia.org/wiki/Shovel"
a2 <- async $ getURL "http://www.wikipedia.org/wiki/Spade"
r1 <- wait m1
r2 <- wait m2
return (r1,r2)



A driver to download many URLs

sites = ["http://www.bing.com",
"http://www.google.com",
... ]

main = mapM (async.http) sites >>= mapM wait
where
http url = do

(page, time) <- timeit $ getURL url
printf "downloaded: %s (%d bytes, %.2fs)\n"

url (B.length page) time

downloaded: http://www.google.com (14524 bytes, 0.17s)

downloaded: http://www.bing.com (24740 bytes, 0.18s)

downloaded: http://www.wikipedia.com/wiki/Spade (62586 bytes, 0.60s)

downloaded: http://www.wikipedia.com/wiki/Shovel (68897 bytes, 0.60s)

downloaded: http://www.yahoo.com (153065 bytes, 1.11s)



An MVar is also...

• lock
– MVar () behaves like a lock: full is unlocked, empty is locked
– Can be used as a mutex to protect some other shared state, or a 

critical region

• one-place channel
– Since an MVar holds at most one value, it behaves like an 

asynchronous channel with a buffer size of one

• container  for shared state
– e.g. MVar (Map key value)
– convert persistent data structure into ephemeral
– efficient (but there are other choices besides MVar)

• building block
– MVar can be used to build many different concurrent data 

structures/abstractions...



Unbounded buffered channels

• Interface:

• write does not block (indefinitely)

• we are going to implement this with MVars

• one easy solution is just

• or perhaps...

• but in both of these, writers and readers will 
conflict with each other

data Chan a -- abstract

newChan :: IO (Chan a)
writeChan :: Chan a -> a -> IO ()
readChan :: Chan a -> IO a

data Chan a = MVar [a]

data Chan a = MVar (Sequence a)



Structure of a channel

type Stream a = MVar (Item a)
data Item a   = Item a (Stream a)

data Chan a = Chan (MVar (Stream a))
(MVar (Stream a))



Implementation

newChan :: IO (Chan a)
newChan = do

hole  <- newEmptyMVar
readVar <- newMVar hole
writeVar <- newMVar hole
return (Chan readVar writeVar)

writeChan :: Chan a -> a -> IO ()
writeChan (Chan _ writeVar) val = do
new_hole <- newEmptyMVar
old_hole <- takeMVar writeVar
putMVar writeVar new_hole
putMVar old_hole (Item val new_hole)

readChan :: Chan a -> IO a
readChan (Chan readVar _) = do
stream <- takeMVar readVar
Item val new <- takeMVar stream
putMVar readVar new
return val

val

old hole new hole

val

old hole new hole

hole



Concurrent behaviour

• Multiple readers:
– 2nd and 

subsequent 
readers block 
here

• Multiple writers:
– 2nd and 

subsequent 
writers block here

readChan :: Chan a -> IO a
readChan (Chan readVar _) = do
stream <- takeMVar readVar
Item val new <- takeMVar stream
putMVar readVar new
return val

writeChan :: Chan a -> a -> IO ()
writeChan (Chan _ writeVar) val = do
new_hole <- newEmptyMVar
old_hole <- takeMVar writeVar
putMVar writeVar new_hole
putMVar old_hole (Item val new_hole)

• a concurrent read might block on old_hole until 
writeChan fills it in at the end



Adding more operations

• Add an operation for pushing a value onto the 
read end:

• Doesn’t seem too hard:

unGetChan :: Chan a -> a -> IO ()

unGetChan :: Chan a -> a -> IO ()
unGetChan (Chan readVar _) val = do

new_read_end <- newEmptyMVar
read_end <- takeMVar readVar
putMVar new_read_end (Item val read_end)
putMVar readVar new_read_end

val

new_read_end read_end



But...

• This doesn’t work as we might expect:

• we don’t expect unGetChan to block
• but it needs to call takeMVar on the read end, and the 

other thread is currently holding that MVar
• No way to fix this...
• Building larger abstractions from MVars can be tricky
• Software Transactional Memory is much easier (later...)

> c <- newChan :: IO (Chan String)

> forkIO $ do v <- readChan c; print v

ThreadId 217

> writeChan c "hello"

"hello"

> forkIO $ do v <- readChan c; print v

ThreadId 243

> unGetChan c "hello"

... blocks ....



A note about fairness

• Threads blocked on an MVar are processed in 
FIFO order

• No thread can be blocked indefinitely, provided 
there is a regular supply of putMVars (fairness)

• Each putMVar wakes exactly one thread, and
performs the blocked operation atomically 
(single-wakeup)

x

Empty MVar

takeMVar takeMVar

Blocked threads

putMVar x

x <- takeMVar



MVars and contention

• Fairness can lead to alternation when two threads compete for an 
MVar
– thread A: takeMVar (succeeds)
– thread B: takeMVar (blocks)
– thread A: putMVar (succeeds, and wakes thread B)
– thread A: takeMVar again (blocks)
– cannot break the cycle, unless a thread is pre-empted while the MVar

is full

• MVar contention can be expensive!

$ ghc fork.hs

[1 of 1] Compiling Main             ( fork.hs, fork.o )

Linking fork ...

$ ./fork | tail -c 300

AAAAAAAAABABABABABABABABABABABABABABABABABABABABABABAB

ABABABABABABABABABABABABABABABABABABABABABABABABABABAB

ABABABABABABABABABABABABABABABABABABABABABABABABABABAB

ABABABABABABABABABABABABABABABABABABABABABABABABABABAB 



Cancellation/interruption

(asynchronous exceptions)



Motivation

• Often we want to interrupt a thread.  e.g.

– in a web browser, the user presses “stop”

– in a server application, we set a time-out on each 
client, close the connection if the client does not 
respond within the required time

– if we are computing based on some input data, 
and the user changes the inputs via the GUI



Isn’t interrupting a thread dangerous?

• Most languages take the polling approach:
– you have to explicitly check for interruption
– maybe built-in support in e.g. I/O operations

• Why?
– because fully-asynchronous interruption is too hard to program 

with in an imperative language.
– Most code is modifying state, so asynchronous interruption will 

often leave state inconsistent.

• In Haskell, most computation is pure, so
– completely safe to interrupt
– furthermore, pure code cannot poll

• Hence, interruption in Haskell is asynchronous
– more robust: don’t have to remember to poll
– but we do have to be careful with IO code



Interrupting a thread

• Throws the exception e in the given thread
• So interruption appears as an exception

– this is good – we need exception handlers to clean up 
in the event of an error, and the same handlers will 
work for interruption too.  

– Code that is already well-behaved with respect to 
exceptions will be fine with interruption.

– threads can also catch interruption exceptions and do 
something – e.g. useful for time-out

throwTo :: Exception e => ThreadId -> e -> IO ()

bracket (newTempFile "temp")
(\file -> removeFile file)
(\file -> ...)



Example

• Let’s extend the async API with cancellation

• So far we have:

• we want to add:

newtype Async a = Async (MVar a)

async :: IO a -> IO (Async a)
async io = do
m <- newEmptyMVar
forkIO $ do r <- io; putMVar m r
return (Async m)

wait :: Async a -> IO a
wait (Async m) = readMVar m

cancel :: Async a -> IO ()



• but what about wait?  previously it had type:

• but what should it return if the Async was 
cancelled?

newtype Async a = Async (MVar a)

async :: IO a -> IO (Async a)
async io = do
m <- newEmptyMVar

forkIO $ do r <- io; putMVar m r
return (Async m)

wait :: Async a -> IO a

• cancel is going to call throwTo, so it needs the 
ThreadId. Hence we need to add ThreadId to Async.



• Cancellation is an exception, so wait should 
return the exception that was thrown.

• This also means that wait will correctly 
handle exceptions caused by errors.

newtype Async a = Async ThreadId 

async :: IO a -> IO (Async a)
async io = do
m <- newEmptyMVar

return (Async t m)

wait :: Async a -> IO 
wait (Async _ var) = takeMVar var



Example

main = do
as <- mapM (async.http) sites

forkIO $ do
hSetBuffering stdin NoBuffering
forever $ do

c <- getChar
when (c == 'q') $ mapM_ cancel as

rs <- mapM wait as
printf "%d/%d finished\n" (length (rights rs)) (length rs)

Hit ‘q’ to stop the 
downloads



$ ./geturlscancel

downloaded: http://www.google.com (14538 bytes, 0.17s)

downloaded: http://www.bing.com (24740 bytes, 0.22s)

q2/5 finished

$

• Points to note:

• We are using a large/complicated HTTP 
library underneath, yet it supports 
interruption automatically

• Having asynchronous interruption be the 
default is very powerful

• However: dealing with truly mutable state 
and interruption still requires some care...



Masking asynchronous exceptions

• Problem:
– call takeMVar
– perform an operation (f :: a -> IO a) on the value
– put the new value back in the MVar
– if an interrupt or exception occurs anywhere, put the 

old value back and propagate the exception

problem m f = do
a <- takeMVar m
r <- f a `catch` \e -> do putMVar m a; throw e
putMVar m r

Attempt 1

problem m f = do
a <- takeMVar m
(do r <- f a

putMVar m r
) 
`catch` \e -> do putMVar m a; throw e

Attempt 2



• Clearly we need a way to manage the delivery of asynchronous 
exceptions during critical sections.

• Haskell provides mask for this purpose:

• Use it like this:

• mask takes as its argument a function (\restore -> ...)
• during execution of (\restore -> ...), asynchronous exceptions are 

masked (blocked until the masked portion returns)
• The value passed in as the argument restore is a function (:: IO a -> 

IO a) that can be used to restore the previous state (unmasked or 
masked) inside the masked portion.

mask :: ((IO a -> IO a) -> IO b) -> IO b

problem m f = mask $ \restore -> do
a <- takeMVar m
r <- restore (f a) `catch` \e -> do putMVar m a; throw e
putMVar m r

problem m f = mask $ problem m f = mask $ 

(f a) 



• So did this solve the problem?

• async exceptions cannot be raised in the red 
portions... so we always safely put back the MVar, 
restoring the invariant

• But: what if takeMVar blocks?
• We are inside mask, so the thread cannot be 

interrupted. Bad!!
• We didn’t really want to mask takeMVar, we only 

want it to atomically enter the masked state when 
takeMVar takes the value

problem m f = mask $ 

(f a) 



• Solution:

• How does this help?
• takeMVar is now interruptible, so the thread can be 

interrupted while blocked
• in general, it is now very hard to write code that is 

uninterruptible for long periods (it has to be in a busy loop)
• Think of mask as 

• interruptible operations poll
• we know which ops poll, so we can use exception handlers
• asynchronous exceptions become inside mask

Operations that block are declared to be 
interruptible

and may receive asynchronous exceptions,
even inside mask.



• hmm, don’t we have another problem now?

• putMVar is interruptible too!
• interruptible operations only receive 

asynchronous exceptions if they actually block
• In this case, we can ensure that putMVar will 

never block, by requiring that all accesses to 
this MVar use a take/put pair, not just a put.

• Alternatively, use the non-blocking version of 
putMVar, tryPutMVar

problem m f = mask $ 

(f a) 



Async-exception safety

• IO code that uses state needs to be made safe 
in the presence of async exceptions

• ensure that invariants on the state are 
maintained if an async exception is raised.

• We make this easier by providing combinators
that cover common cases.

• e.g. the function problem we saw earlier is a 
useful way to safely modify the contents of an 
MVar:

modifyMVar_ :: MVar a -> (a -> IO a) -> IO ()



Making Chan safe

• We had this:

• use modifyMVar_

writeChan :: Chan a -> a -> IO ()
writeChan (Chan _ writeVar) val = do
new_hole <- newEmptyMVar
old_hole <- takeMVar writeVar
putMVar writeVar new_hole
putMVar old_hole (Item val new_hole)

danger! 

writeChan (Chan _ writeVar) val = do
new_hole <- newEmptyMVar
modifyMVar_ writeVar $ \old_hole -> do

putMVar old_hole (Item val new_hole)
return new_hole



Software Transactional Memory



Software transactional memory

• An alternative to MVar for managing

– shared state

– communication

• STM has several advantages:

– compositional

– much easier to get right

– much easier to manage error conditions (including 
async exceptions)



Example: a window-manager

One desktop has 
focus.  The user can 

change the focus.

The user can move windows from 
one desktop to another.

Applications can move their own 
windows, and pop-up new windows



How to implement this?

• Suppose we want to structure the window 
manager in several threads, one for each 
input/output stream:

– One thread to listen to the user

– One thread for each client application

– One thread to render the display

• The threads share the state of the desktops –
how should we represent it?



Option 1: a single MVar

• Advantages:
– simple

• Disadvantages:
– single point of contention. (not only performance: 

one misbehaving thread can block everyone else.)

• representing the Display by a process (aka the 
actor model) suffers from the same problem

• Can we do better?

type Display = MVar (Map Desktop (Set Window))



Option 2: one MVar per Desktop

• This avoids the single point of contention, but a 
new problem emerges. Try to write an operation 
that moves a window from one Desktop to 
another:

type Display = MVar (Map Desktop (Set Window))
type Display = Map Desktop (MVar (Set Window))

moveWindow :: Display -> Window -> Desktop -> Desktop
-> IO ()

moveWindow disp win a b = do
wa <- takeMVar ma
wb <- takeMVar mb
putMVar ma (Set.delete win wa)
putMVar mb (Set.insert win wb)
where
ma = fromJust (Map.lookup a disp)
mb = fromJust (Map.lookup b disp)



moveWindow :: Display -> Window -> Desktop -> Desktop
-> IO ()

moveWindow disp win a b = do
wa <- takeMVar ma
wb <- takeMVar mb
putMVar ma (Set.delete win wa)
putMVar mb (Set.insert win wb)
where
ma = fromJust (Map.lookup a disp)
mb = fromJust (Map.lookup b disp)

Be careful to take both 
Mvars before putting 
the results, otherwise 
another thread could 

observe an inconsistent 
intermediate state

• Ok so far, but what if we have two concurrent calls to moveWindow:

• Thread 1 takes the MVar for Desktop a
• Thread 2 takes the MVar for Desktop b
• Thread 1 tries to take the MVar for Desktop b, and blocks
• Thread 2 tries to take the MVar for Desktop a, and blocks
• DEADLOCK (“Dining Philosophers”)

Thread 1: moveWindow disp w1 a b
Thread 2: moveWindow disp w2 b a



How can we solve this?

• Impose a fixed ordering on MVars, make 
takeMVar calls in the same order on every 
thread

– painful

– the whole application must obey the rules 
(including libraries)

– error-checking can be done at runtime, but 
complicated (and potentially expensive)



STM solves this

• The operations inside happen indivisibly to 
the rest of the program (it is a transaction)

• ordering is irrelevant – we could reorder the readTVar 
calls, or interleave read/write/read/write

type Display = Map Desktop (TVar (Set Window))

moveWindow :: Display -> Window -> Desktop -> Desktop -> IO ()

moveWindow disp win a b = $ do
wa <- readTVar ma
wb <- readTVar mb
writeTVar ma (Set.delete win wa)
writeTVar mb (Set.insert win wb)
where
ma = fromJust (Map.lookup a disp)
mb = fromJust (Map.lookup b disp)



• Basic STM API:

• The implementation does not use a global 
lock: two transactions operating on disjoint 
sets of TVars can proceed simultaneously

data STM a -- abstract
instance Monad STM -- amongst other things

atomically :: STM a -> IO a

data TVar a -- abstract
newTVar   :: STM (TVar a)
readTVar  :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM ()



Composability

• STM is composable

• e.g. write an operation to swap two windows

• with MVars we would have to write a special-
purpose routine to do this...

swapWindows :: Display
-> Window -> Desktop
-> Window -> Desktop
-> IO ()



• with STM we can build on what we already have:

• (moveWindowSTM is just moveWindow without 
atomically – this is typically how STM operations are 
provided)

• STM allows us to compose stateful operations into larger 
transactions
• thus allowing more reuse
• and modularity – we don’t have to know how 

moveWindowSTM works internally to be able to 
compose it.

swapWindows :: Display
-> Window -> Desktop
-> Window -> Desktop
-> IO ()

swapWindows disp w a v b = atomically $ do
moveWindowSTM disp w a b
moveWindowSTM disp v b a



STM and blocking

• So far we saw how to use STM to build atomic 
operations on shared state

• But concurrency often needs a way to manage 
blocking – that is, waiting for some condition 
to become true 

– e.g. a channel is non-empty

• Haskell’s STM API has a beautiful way to 
express blocking too...



retry :: STM a

• that’s it!
• the semantics of retry is just “try the current transaction again”
• e.g. block until a TVar contains a non-zero value:

• busy-waiting is a possible implementation, but we can do better:
• obvious optimisation: wait until some state has changed
• specifically, wait until any TVars accessed by this transaction so 

far have changed (this turns out to be easy for the runtime to 
arrange)

• so retry gives us blocking – the current thread is blocked 
waiting for the TVars it has read to change

atomically $ do
x <- readTVar v
if x == 0 then retry

else return x



Using blocking in the window manager

• We want a thread responsible for rendering 
the currently focussed desktop on the display
– it must re-render when something changes

– the user can change the focus

– windows can move around

• there is a TVar containing the current focus:

• so we can get the set of windows to render:

type UserFocus = TVar Desktop

getWindows :: Display -> UserFocus -> STM (Set Window)
getWindows disp focus = do
desktop <- readTVar focus
readTVar (fromJust (Map.lookup desktop disp))



• Given:

• Here is the rendering thread:

• so we only call render when something has changed.
• The runtime ensures that the render thread remains blocked until either

• the focus changes to a different Desktop
• the set of Windows on the current Desktop changes

renderThread :: Display -> UserFocus -> IO ()
renderThread disp focus = do
wins <- atomically $ getWindows disp focus
loop wins
where
loop wins = do

render wins
next <- atomically $ do

wins' <- getWindows disp focus
if (wins == wins')

then retry
else return wins'

loop next

render :: Set Window -> IO ()



• No need for explicit wakeups

• the runtime is handling wakeups 
automatically

• state-modifying code doesn’t need to 
know who to wake up – more 
modularity

• no “lost wakeups” – a common type of 
bug with condition variables



Channels in STM

• Earlier we implemented channels with MVars

• Instructive to see what channels look like in 
STM

• Also we’ll see how STM handles composing 
transactions that block

• And how STM makes it much easier to handle 
exceptions (particularly asynchronous 
exceptions)



data TChan a = TChan (TVar (TVarList a))
(TVar (TVarList a))

type TVarList a = TVar (TList a)
data TList a = TNil | TCons a (TVarList a)

readTChan :: TChan a -> STM a
readTChan (TChan read _write) = do
listhead <- readTVar read
head <- readTVar listhead
case head of

TNil -> retry
TCons a tail -> do

writeTVar read tail
return a

• Why do we need TNil & TCons?
• unlike MVars, TVars do not have an empty/full 

state, so we have to program it
• Otherwise, the structure is exactly the same as the 

MVar implementation



Benefits of STM channels (1)

• Correctness is straightforward: do not need to 
consider interleavings of operations

– (recall with MVar we had to think carefully about 
what happened with concurrent read/write, 
write/write, etc.)



Benefits of STM channels (2)

• more operations are possible, e.g.:

• (this was not possible with MVar, trivial with 
STM)

unGetTChan :: TChan a -> a -> STM ()
unGetTChan (TChan read _write) a = do

listhead <- readTVar read
newhead <- newTVar (TCons a listhead)
writeTVar read newhead



Benefits of STM channels (3)

• Composable blocking.  Suppose we want to 
implement

• we want to write a transaction like

readEitherTChan :: TChan a -> TChan b -> STM (Either a b)

readEitherTChan a b = atomically $
(fmap Left $ readTChan a)

(fmap Right $ readTChan b)

readEitherTChan a b = atomically $
(fmap Left $ readTChan a)

(fmap Right $ readTChan b)



• execute the first argument

• if it returns a value:

• that is the value returned by orElse

• if it retries:

• discard any effects (writeTVars) it did

• execute the second argument

• orElse is another way to compose 
transactions: it runs either one or the other



Benefits of STM channels (4)

• Asynchronous exception safety.

• error-handling in STM is trivial: since the effects are 
discarded, all invariants are restored after an exception 
is raised.

• Asynchronous exception safety comes for free!
• The simple TChan implementation is already async-

exception-safe

If an exception is raised during a transaction, the 
effects of the transaction are discarded, and the 

exception is propagated as normal 



STM summary

• Composable atomicity

• Composable blocking

• Robustness: easy error handling

• Don’t believe the anti-hype!

• Why would you still use MVar?

– fairness

– single-wakeup

– performance



Lab

• Download the sample code here:

• or get it with git:

• code is in par-tutorial/code

• lab exercises are here:

git clone https://github.com/simonmar/par-tutorial.git

http://community.haskell.org/~simonmar/lab-exercises.pdf

http://community.haskell.org/~simonmar/par-tutorial.tar.gz


