Parallel and Concurrent Haskell
Part ||

Simon Marlow
(Microsoft Research, Cambridge, UK)

Concurrent Haskell

A Recap:
| concurrent programming is abotitireads of control

| concurrency Is necessary for dealing with multiple
sources of input/output:
A network connections
A GUI, user input
A database connections

I threads of controlet you handle multiple
Input/output sources in anodularway: the code for
each source Is written separately

Summary

ALY OGKA& LI NI 27
| Basic concurrency

AforklO
AMVars

I Asynchronous exceptions
Acancellation
Atimeout

I Software Transactional Memory

Forking threads

forklO 110 () - > 10 Threadld

A creates a new thread to run the 10 ()
AYySg GKNBFIR NdXzya al O
current thread and other threads

Interleaving example

import Control.Concurrent forklO 10 () - > ThreadlId
import Control.Monad
import System.|O forever :: ma ->ma
putChar ::Char ->10()
main = do threadDelay 2 o Int ->10()
hSetBuffering stdout NoBuffering
forklO (forever (putChar 'A’))
forklO (forever (putChar 'B'))
threadDelay (10°6)

$ ghc fork.hs

[1 of 1] Compiling Main fork.hs , fork.o)
Linking fork ...

$./ffork | tall -¢ 300
AAAAAAAAAB
AB
AB
AB
$

Threadld

forklO 110 () - > 10 Threadld

I what can you do with a Threadld?

A check status witlGHC.Conc.threadStat(isseful for
debugging):

>import Control.Concurrent

>do{t< - forklO (threadDelay (1076)); GHC.Conc.threadStatus t}
ThreadRunning

>do{t< - forklO (threadDelay (1076)); yield; GHC.Conc.threadStatus t}
ThreadBlocked BlockedOnMVar

I Also:
A compare for equality
Akill / send exceptions (later...)

A note about performance

ADI / Qa U Kiglisveighes | NB
> ./Main 1000000 1 +RTS -S
Creating pipeline with 1000000 processes in it.

Pumping a single message through the pipeline.
Pumping a 1 messages through the pipeline.

n create pumpl pump2 create/n pumpl/n pump2/n

S S S us us
1000000 5.980 1.770 1.770 5.98 1.77 1.77

A 1076 threads requires 1.5G1.5k/thread

I most of that is stack space, which grows/shrinks on
demand

A cheap threads makes it feasible to use them
liberally, e.g. one thread per client in a server

CommunicationMVars

A MVaris the basic communication primitive in
mEEE M data Mvar a .- abstract

newEmptyMVar :: IO (MVar a)

takeMVar ::MVar a -> 10 a
putMVar :: MVar a ->a ->10()

putMVar . takeMVar takeMVar

takeMVar

A And converselyputMVarblockswhen theMVar
IS full.

Example: overlapping I/O

A One common use for concurrency is to overlap
multiple 1/O operations

I overlapping I/O reduces latencies, and allows better
use of resources

A overlapping I/O is easy with threads: just do each
/O In a separate thread

I the runtime takes care of making this efficient
A e.g. downloading two web pages

Downloading URLS

getURL :: String - > |0 String

ml <- newEmptyMVar
m2 <- newEmptyMVar

forklO $do
r< - getURL "http://www.wikipedia.org/wiki/Shovel"
putMVar mlr

forklO $do
r< - getURL "http://www.wikipedia.org/wiki/Spade"
putMVar m2r

ri1 < - takeMVar ml
r2< - takeMVar m2
return (rl,r2)

Abstract the common pattern

A Fork a new thread to execute an 1O action,
and later wait for the result

newtype Async a= Async (MVar a)

async :10a ->10(Async a)

async io =do
m <- newEmptyMVar
forklO $dor< - io; putMVar mr
return(Async m)

wait :: Async a ->10a
wait (Async m) = readMVar m readMVar :: MVar a ->10a
readMVar m = do
a< - takeMVarm

putMVar m a
return a

UsingAsync...

al < - async $ getURL "http://www.wikipedia.org/wiki/Shovel"
a2 < - async $ getURL "http://www.wikipedia.org/wiki/Spade"

r1< wait ml
r2 < wait m2
return (rl,r2)

A driver to download many URLS

sites = ["http://www.bing.com",
"http://www.google.com”,

]

main = mapM (async.http) sites >>= mapM wait
where
http url = do
(page, time) < - timeit $ getURL url
printf "downloaded: %s (%d bytes, %.2fs)
url (B.length page) time

downloaded: http://www.google.com (14524 bytes, 0.17s)

downloaded: http://www.bing.com (24740 bytes, 0.18s)

downloaded: http://www.wikipedia.com/wiki/Spade (62586 bytes, 0.60s)
downloaded: http://www.wikipedia.com/wiki/Shovel (68897 bytes, 0.60s)
downloaded: http://www.yahoo.com (153065 bytes, 1.115S)

AnMVaris also...

A lock

I MVar() behaves like a lock: full is unlocked, empty is locked
I Can be used asmautexto protect some other shared state, or a
critical region
A oneplace channel

I Since arMVarholds at most one value, it behaves like an
asynchronous channel with a buffer size of one

A container for shared state
I e.g.MVar(Map key value)
I convert persistent data structure into ephemeral
I efficient (but there are other choices besidé¥ar)

A building block

I MVarcan be used to build many different concurrent data
structures/abstractions...

Unbounded buffered channels

A IIg o= data Chana - abstract

newChan .. 10 (Chan a)

writeChan :: Chan a ->a ->10()
readChan : Chan a ->10 a

A write doesnot block (indefinitely)

A we are going to implement this withlVars
A one easy solution is ju TSNS
A or o[S]gfeTofS data Chana = MVar (Sequence a)

A but in both of these, writers and readers will
conflict with each other

Structure of a channel

Channel

Read end & ﬂ— % = Write end

First value Second value Third value

type Stream a = MVar (ltem a)
data Iltema = Item a (Stream a)

data Chan a = Chan (MVar (Stream a))
(MVar (Stream a))

Implementation

newChan :: 10 (Chan a)
newChan =do

hole < - newEmptyMVar

readVar <- newMVar hole
writeVar <- newMVar hole

hole return (Chan readVar writeVar)
writeChan :: Chan a ->a ->10()
writeChan (Chan _ writevVar) val

new_hole <- newEmptyMVar
old hole <- takeMVar writeVar -
putMVar writeVar new_hole = val -

putMVar old hole (Item val new_hole) old hole new hole
readChan : Chan a ->10a
n- readChan (Chan readVar _)=do
stream < - takeMVar readVar
ltem val new<- takeMVar stream
- “ putMVar readVar new

old hole new hole return val

