
Parallel and Concurrent Haskell
Part II

Simon Marlow

(Microsoft Research, Cambridge, UK)

Concurrent Haskell

ÅRecap:

ïconcurrent programming is about threads of control

ïconcurrency is necessary for dealing with multiple
sources of input/output:

Ånetwork connections

ÅGUI, user input

Ådatabase connections

ïthreads of controllet you handle multiple
input/output sources in a modularway: the code for
each source is written separately

Summary

ÅLƴ ǘƘƛǎ ǇŀǊǘ ƻŦ ǘƘŜ ŎƻǳǊǎŜ ǿŜΩǊŜ ƎƻƛƴƎ ǘƻ ŎƻǾŜǊ

ïBasic concurrency

ÅforkIO

ÅMVars

ïAsynchronous exceptions

Åcancellation

Åtimeout

ïSoftware Transactional Memory

Forking threads

Åcreates a new thread to run the IO ()

ÅƴŜǿ ǘƘǊŜŀŘ Ǌǳƴǎ άŀǘ ǘƘŜ ǎŀƳŜ ǘƛƳŜέ ŀǎ ǘƘŜ
current thread and other threads

forkIO :: IO () - > IO ThreadId

Interleaving example

$ ghc fork.hs

[1 of 1] Compiling Main (fork.hs , fork.o)

Linking fork ...

$./fork | tail - c 300

AAAAAAAAAB

AB

AB

AB

$

forkIO :: IO () - > ThreadId

forever :: m a - > m a
putChar :: Char - > IO ()
threadDelay :: Int - > IO ()

import Control.Concurrent
import Control.Monad
import System.IO

main = do
hSetBuffering stdout NoBuffering
forkIO (forever (putChar 'A'))
forkIO (forever (putChar 'B'))
threadDelay (10^6)

ThreadId

ïwhat can you do with a ThreadId?
Åcheck status with GHC.Conc.threadStatus(useful for

debugging):

ïAlso:
Åcompare for equality
Åkill / send exceptions (later...)

forkIO :: IO () - > IO ThreadId

> import Control.Concurrent

> do { t < - forkIO (threadDelay (10^6)); GHC.Conc.threadStatus t }

ThreadRunning

> do { t < - forkIO (threadDelay (10^6)); yield; GHC.Conc.threadStatus t }

ThreadBlocked BlockedOnMVar

A note about performance

ÅDI/Ωǎ ǘƘǊŜŀŘǎ ŀǊŜ lightweight

Å10^6 threads requires 1.5Gb ς1.5k/thread
ïmost of that is stack space, which grows/shrinks on

demand

Åcheap threads makes it feasible to use them
liberally, e.g. one thread per client in a server

> ./Main 1000000 1 +RTS - s

Creating pipeline with 1000000 processes in it.

Pumping a single message through the pipeline.

Pumping a 1 messages through the pipeline.

n create pump1 pump2 create/n pump1/n pump2/n

s s s us us us

1000000 5.980 1.770 1.770 5.98 1.77 1.77

Communication: MVars

ÅMVaris the basic communication primitive in
Haskell. data MVar a -- abstract

newEmptyMVar :: IO (MVar a)
takeMVar :: MVar a - > IO a
putMVar :: MVar a - > a - > IO ()

x

Empty MVar

takeMVar takeMVar

Blocked threads

putMVar x

x < - takeMVar

ÅAnd conversely:putMVarblockswhen the MVar
is full.

Example: overlapping I/O

ÅOne common use for concurrency is to overlap
multiple I/O operations
ïoverlapping I/O reduces latencies, and allows better

use of resources

Åoverlapping I/O is easy with threads: just do each
I/O in a separate thread
ïthe runtime takes care of making this efficient

Åe.g. downloading two web pages

sequential I/O overlapped I/O

Downloading URLs

getURL :: String - > IO String

do
m1 < - newEmptyMVar
m2 < - newEmptyMVar

forkIO $ do
r < - getURL "http://www.wikipedia.org/wiki/Shovel"
putMVar m1 r

forkIO $ do
r < - getURL "http://www.wikipedia.org/wiki/Spade"
putMVar m2 r

r1 < - takeMVar m1
r2 < - takeMVar m2
return (r1,r2)

Abstract the common pattern

ÅFork a new thread to execute an IO action,
and later wait for the result

newtype Async a = Async (MVar a)

async :: IO a - > IO (Async a)
async io = do

m <- newEmptyMVar
forkIO $ do r < - io ; putMVar m r
return (Async m)

wait :: Async a - > IO a
wait (Async m) = readMVar m readMVar :: MVar a - > IO a

readMVar m = do
a < - takeMVar m
putMVar m a
return a

Using Async....

do
a1 < - async $ getURL "http://www.wikipedia.org/wiki/Shovel"
a2 < - async $ getURL "http://www.wikipedia.org/wiki/Spade"
r1 < - wait m1
r2 < - wait m2
return (r1,r2)

A driver to download many URLs

sites = ["http://www.bing.com",
"http://www.google.com",
...]

main = mapM (async.http) sites >>= mapM wait
where

http url = do
(page, time) < - timeit $ getURL url
printf "downloaded: %s (%d bytes, %.2fs) \ n"

url (B.length page) time

downloaded: http://www.google.com (14524 bytes, 0.17s)

downloaded: http://www.bing.com (24740 bytes, 0.18s)

downloaded: http://www.wikipedia.com/wiki/Spade (62586 bytes, 0.60s)

downloaded: http://www.wikipedia.com/wiki/Shovel (68897 bytes, 0.60s)

downloaded: http://www.yahoo.com (153065 bytes, 1.11s)

An MVaris also...

Å lock
ïMVar() behaves like a lock: full is unlocked, empty is locked
ïCan be used as a mutexto protect some other shared state, or a

critical region

Åone-place channel
ïSince an MVarholds at most one value, it behaves like an

asynchronous channel with a buffer size of one

Åcontainer for shared state
ïe.g. MVar(Map key value)
ïconvert persistent data structure into ephemeral
ïefficient (but there are other choices besides MVar)

Åbuilding block
ïMVarcan be used to build many different concurrent data

structures/abstractions...

Unbounded buffered channels

ÅInterface:

Åwrite does not block (indefinitely)

Åwe are going to implement this with MVars

Åone easy solution is just

Åor perhaps...

Åbut in both of these, writers and readers will
conflict with each other

data Chan a -- abstract

newChan :: IO (Chan a)
writeChan :: Chan a - > a - > IO ()
readChan :: Chan a - > IO a

data Chan a = MVar [a]

data Chan a = MVar (Sequence a)

Structure of a channel

type Stream a = MVar (Item a)
data Item a = Item a (Stream a)

data Chan a = Chan (MVar (Stream a))
(MVar (Stream a))

Implementation

newChan :: IO (Chan a)
newChan = do

hole < - newEmptyMVar
readVar <- newMVar hole
writeVar <- newMVar hole
return (Chan readVar writeVar)

writeChan :: Chan a - > a - > IO ()
writeChan (Chan _ writeVar) val = do

new_hole <- newEmptyMVar
old_hole <- takeMVar writeVar
putMVar writeVar new_hole
putMVar old_hole (Item val new_hole)

readChan :: Chan a - > IO a
readChan (Chan readVar _) = do

stream < - takeMVar readVar
Item val new < - takeMVar stream
putMVar readVar new
return val

val

old hole new hole

val

old hole new hole

hole

