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Concurrent Haskell

* Recap:
— concurrent programming is about threads of control

— concurrency is necessary for dealing with multiple
sources of input/output:
* network connections
* GQUI, user input
* database connections

— threads of control let you handle multiple
input/output sources in a modular way: the code for
each source is written separately



Summary

* |n this part of the course we’re going to cover

— Basic concurrency
 forklO
* MVars

— Asynchronous exceptions
e cancellation

* timeout

— Software Transactional Memory



Forking threads

forkIOo :: I0 () -> IO ThreadId

e creates a new thread to run the 10 ()

e new thread runs “at the same time” as the
current thread and other threads



Interleaving example

import Control.Concurrent forkio :: 10 () -> ThreadId
import Control.Monad
import System.IO forever :: ma ->m a
putChar :: Char -> 10 Q)
main = do threadDelay :: Int -> I0 ()
hSetBuffering stdout NoBuffering
forkio (forever (putChar 'A'))
forkio (forever (putChar 'B'))
threadbelay (10A6)

$ ghc fork.hs

[1 of 1] Compiling Main ( fork.hs, fork.o )
Linking fork ...

$ ./fork | tail -c 300
AAAAAAAAABABABABABABABABABABABABABABABABABABABABABABAB
ABABABABABABABABABABABABABABABABABABABABABABABABABABAB
ABABABABABABABABABABABABABABABABABABABABABABABABABABAB
ABABABABABABABABABABABABABABABABABABABABABABABABABABAB
$




Threadld

forkiIo :: 10 () -> I0 ThreadId

— what can you do with a Threadld?

* check status with GHC.Conc.threadStatus (useful for
debugging):

> import Control.Concurrent
> do { t <- forkio (threadbelay (10A6)); GHC.Conc.threadStatus t }

ThreadRunning
> do { t <- forkio (threadbelay (10A6)); yield; GHC.Conc.threadStatus t }

ThreadBlocked BlockedonMvar

— Also:
e compare for equality
 kill / send exceptions (later...)



A note about performance

* GHC's threads are lightweight

> ./Main 1000000 1 +RTS -s

Creating pipeline with 1000000 processes in it.
Pumping a single message through the pipeline.
Pumping a 1 messages through the pipeline.

n create pumpl pump2 create/n pumpl/n pump2/n
S S S us us us
1000000 5.980 1.770 1.770 5.98 1.77 1.77

* 1076 threads requires 1.5Gb — 1.5k/thread

— most of that is stack space, which grows/shrinks on
demand

* cheap threads makes it feasible to use them
liberally, e.g. one thread per client in a server




Communication: MVars

MVar is the basic communication primitive in
SENCCI I data Mvar a -- abstract

newEmptyMvar :: IO (Mvar a)
takeMvar :: Mvar a -> IO a
putMvar :: Mvar a -> a -> I0 O

putMvar x . takeMvar takemvar

x <- takeMVar

* And conversely: putMVar blocks when the MVar
is full.



Example: overlapping 1/0

* One common use for concurrency is to overlap
multiple |/O operations

— overlapping I/O reduces latencies, and allows better
use of resources

* overlapping /O is easy with threads: just do each
/0 in a separate thread

— the runtime takes care of making this efficient
* e.g. downloading two web pages



Downloading URLs

getURL :: String -> IO String

ml <- newEmptyMmvar
m2 <- newEmptymvar

forkIo $ do

r <- getURL "http://www.wikipedia.org/wiki/Shovel"
putMvar ml r

forkIo $ do

r <- getURL "http://www.wikipedia.org/wiki/Spade"
putMvar m2 r

rl <- takemvar ml
r2 <- takemvar m2
return (rl,r2)




Abstract the common pattern

 Fork a new thread to execute an 10 action,
and later wait for the result

newtype Async a = Async (Mvar a)

async :: I0 a -> IO (Async a)
async io = do
m <- newEmptyMvar
forkio $ do r <- io; putMvar m r
return (Async m)

wait :: Async a -> IO a
wait (Async m) = readvvar m readMvar :: Mvar a -> IO a
readMvar m = do
a <- takemvar m
putMvar m a
return a




Using Async....

al <- async $ getURL "http://www.wikipedia.org/wiki/Shovel"
a2 <- async $ getURL "http://www.wikipedia.org/wiki/Spade"

rli <- wait ml
r2 <- wait m2
return (rl,r2)




A driver to download many URLs

sites = ["http://www.bing.com",
"http://www.google.com",
]

main = mapM (async.http) sites >>= mapM wait
where
http url = do
(page, time) <- timeit $ getURL url
printf "downloaded: %s (%d bytes, %.2fs)\n"
url (B.length page) time

downloaded: http://www.google.com (14524 bytes, 0.17s)

downloaded: http://www.bing.com (24740 bytes, 0.18s)

downloaded: http://www.wikipedia.com/wiki/Spade (62586 bytes, 0.60s)
downloaded: http://www.wikipedia.com/wiki/Shovel (68897 bytes, 0.60s)
downloaded: http://www.yahoo.com (153065 bytes, 1.11s)




An MVar is also...

* Jock
— MVar () behaves like a lock: full is unlocked, empty is locked

— Can be used as a mutex to protect some other shared state, or a
critical region

* one-place channel

— Since an MVar holds at most one value, it behaves like an
asynchronous channel with a buffer size of one

e container for shared state
— e.g. MVar (Map key value)
— convert persistent data structure into ephemeral
— efficient (but there are other choices besides MVar)

* building block

— MVar can be used to build many different concurrent data
structures/abstractions...



Unbounded buffered channels

O I =Ia 1o data Chan a -- abstract
nhewChan :: IO (Chan a)

writeChan :: Chan a -> a -> 10 ()
readChan :: Chan a -> IO a

e write does not block (indefinitely)
* we are going to implement this with MVars

* one easy solution is just

NI oI=Idg-]o] ¥l data Chan a = Mvar (Sequence a)

 butin both of these, writers and readers will
conflict with each other



Structure of a channel

Channel

Read end & ﬂ— % = Write end

First value Second value Third value

type Stream a = Mvar (Item a)
data Item a Item a (Stream a)

data Chan a = Chan (Mvar (Stream a))
(Mvar (Stream a))




Implementation

newChan :: IO (Chan a)
nhewChan = do
hole <- newEmptyMvar

readvar <- newMmvar hole
writevar <- newMvar hole

hole return (Chan readvar writevar)
writeChan :: Chan a -> a -> I0 ()
writeChan (Chan _ writevar) val = do

new_hole <- newEmptyMvar
old_hole <- takemvar writevar = -
putMvar writevar new_hole

putMvar old_hole (Item val new_hole) old hole new hole

readChan :: Chan a -> IO a

n- readChan (Chan readvar _) = do

stream <- takemMvar readvar

Item val new <- takeMvar stream
- “ putMvar readvar new

old hole new hole return val




Concurrent behaviour

Mu|t|p|e readers: readChan :: chan a -> I0 a
readChan (Chan readvar _) = do
— 2M and stream <-, takeMvar readvar
mval new <- takeMvar stream
SUbsequent putMvar readvar new
readers block e
here
MUItlple writers: writeChan :: Chan a -> a -> I0 (O
_ 97nd and writeChan (Chan _ writevar) val = do
new_ ho1e <- newEmptyMvar
subsequent takeMvar writevar

writers block here putMVar writevar new_hole
putMvar old_hole (Item val new_hole)

* aconcurrent read might block on old_hole until
writeChan fills it in at the end



Adding more operations

* Add an operation for pushing a value onto the
=EloM=1ale Bl unGetchan :: chan a -> a -> 10 )

e Doesn’t seem too hard:

unGetChan :: Chan a -> a -> I0 (O
unGetChan (Chan readvar _) val = do
new_read_end <- newEmptyMvar

read_end <- takeMvar readvar

putMvar new_read_end (Item val read_end)
putMvar readvar new_read_end

E ET I

new_read end read_end




But...

 This doesn’t work as we might expect:

> C <- newChan :: I0 (Chan String)

> forkio $ do v <- readChan c; print v
Threadid 217

> writeChan c "hello"

"hello"

> forkiIo $ do v <- readChan c; print v
Threadid 243
> unGetChan c "hello"

. blocks ....

 we don’t expect unGetChan to block

* but it needs to call takeMVar on the read end, and the
other thread is currently holding that MVar

* No way to fix this...
* Building larger abstractions from MVars can be tricky
e Software Transactional Memory is much easier (later...)



A note about fairness

.

 Threads blocked on an MVar are processed in
FIFO order

* No thread can be blocked indefinitely, provided
there is a regular supply of putMVars (fairness)

* Each putMVar wakes exactly one thread, and
performs the blocked operation atomically
(single-wakeup)

putMvar x

x <- takeMVar




MVars and contention

$ ghc fork.hs

[1 of 1] Compiling Main ( fork.hs, fork.o )
Linking fork ...

$ ./fork | tail -c 300

AAAAAAAAABABABABABABABABABABABABABABABABABABABABABABAB
ABABABABABABABABABABABABABABABABABABABABABABABABABABAB
ABABABABABABABABABABABABABABABABABABABABABABABABABABAB
ABABABABABABABABABABABABABABABABABABABABABABABABABABAB

* Fairness can lead to alternation when two threads compete for an
MVar

— thread A: takeMVar (succeeds)

— thread B: takeMVar (blocks)

— thread A: putMVar (succeeds, and wakes thread B)
— thread A: takeMVar again (blocks)

— cannot break the cycle, unless a thread is pre-empted while the MVar
is full

 MVar contention can be expensive!



Cancellation/interruption

(asynchronous exceptions)



Motivation

e Often we want to interrupt a thread. e.g.

— in a web browser, the user presses “stop”

— in a server application, we set a time-out on each
client, close the connection if the client does not
respond within the required time

— if we are computing based on some input data,
and the user changes the inputs via the GUI



Isn’t interrupting a thread dangerous?

Most languages take the polling approach:
— you have to explicitly check for interruption
— maybe built-in support in e.g. |/O operations

Why?

— because fully-asynchronous interruption is too hard to program
with in an imperative language.

— Most code is modifying state, so asynchronous interruption will
often leave state inconsistent.

In Haskell, most computation is pure, so

— completely safe to interrupt

— furthermore, pure code cannot poll

Hence, interruption in Haskell is asynchronous
— more robust: don’t have to remember to poll

— but we do have to be careful with 10 code



Interrupting a thread

throwTo :: Exception e => ThreadId -> e -> I0 ()

* Throws the exception e in the given thread

* So interruption appears as an exception

— this is good — we need exception handlers to clean up
in the event of an error, and the same handlers will
work for interruption too.

— Code that is already well-behaved with respect to
exceptions will be fine with interruption.

bracket (newTempFile "temp")

(\file -> removeFile file)
(\file -> ...)

— threads can also catch interruption exceptions and do
something — e.g. useful for time-out



Example

e Let’s extend the async APl with cancellation
RN BRI =N aE\V=l newtype Async a = Async (Mvar a)

async :: IO a -> IO (Async a)
async 1o = do
m <- newEmptymvar
forkio $ do r <- 1io0; putMvar m r
return (Async m)

wait :: Async a -> IO a
wait (Async m) = readmvar m

RV RYYE sl o= 1e [0l cancel :: Async a -> I0 ()



cancel is going to call throwTo, so it needs the
ThreadId. Hence we need to add ThreadId to Async.

newtype Async a = Async ThreadId (Mvar a)

async :: IO a -> IO (Async a)

async 1o = do
m <- newEmptyMvar
t <- forkio $ do r <- io; putmvar m r
return (Async t m)

cancel :: Async a -> I0 ()
cancel (Async t _) = throwTo t ThreadKilled

but what about wait? previously it had type:

wait :: Async a -> IO a

but what should it return if the Async was
cancelled?



e Cancellation is an exception, so wait should
return the exception that was thrown.

* This also means that wait will correctly
handle exceptions caused by errors.

newtype Async a = Async Threadid
(Mvar (Either SomeException a))

async :: IO a -> IO (Async a)
async 1o = do
m <- newEmptyMvar
t <- forkio ((do r <- action; putMvar var (Right r))
“catch™ \e -> putMvar var (Left e))
return (Async t m)

wait :: Async a -> IO (Either SomeException a)
wait (Async _ var) = takemvar var




Example

main = do
as <- mapM (async.http) sites
Hit ‘q’ to stop the
forkiIo $ do downloads
hSetBuffering stdin NoBuffering
forever $ do

c <- getChar
when (c == 'q') $ mapM_ cancel as

rs <- mapm wait as
printf "%d/%d finished\n" (length (rights rs)) (length rs)




$ ./geturlscancel
downloaded: http://www.google.com (14538 bytes, 0.17s)
downloaded: http://www.bing.com (24740 bytes, 0.22s)

g2/5 finished
$

* Points to note:

* We are using a large/complicated HTTP
library underneath, yet it supports
interruption automatically

* Having asynchronous interruption be the
default is very powerful

* However: dealing with truly mutable state
and interruption still requires some care...



Masking asynchronous exceptions

* Problem:
— call takeMVar
— perform an operation (f :: a -> 10 a) on the value
— put the new value back in the MVar

— if an interrupt or exception occurs anywhere, put the
old value back and propagate the exception

Attempt 2

problem m f = do
a <- takemvar m
(do r <- f a

putMvar m r
)

"catch  \e -> do putMvar m a; throw e




* Clearly we need a way to manage the delivery of asynchronous
exceptions during critical sections.

* Haskell provides mask for this purpose:

mask :: ((I0 a -> I0 a) -> I0b) -> 10 Db

Use it like this:

problem m f = mask $ \restore -> do
a <- takemvar m

r <- restore (f a) catch \e -> do putMvar m a; throw e
putMvar m r

* mask takes as its argument a function (\restore -> ...)

* during execution of (\restore -> ...), asynchronous exceptions are
masked (blocked until the masked portion returns)

 The value passed in as the argument restore is a function (:: 10 a ->
|0 a) that can be used to restore the previous state (unmasked or
masked) inside the masked portion.



* So did this solve the problem?

problem m f = mask $ \restore -> do
a <- takemvar m

r <- restore (f a) catch \e -> do putMvar m a; throw e
putMvar m r

e async exceptions cannot be raised in the red
portions... so we always safely put back the MVar,
restoring the invariant

e But: what if takeMVar blocks?

* We are inside mask, so the thread cannot be
interrupted. Bad!!

 We didn’t really want to mask takeMVar, we only
want it to atomically enter the masked state when
takeMVar takes the value



e Solution:

Operations that block are declared to be
interruptible

and may receive asynchronous exceptions,
even inside mask.

 How does this help?

* takeMVar is now interruptible, so the thread can be
interrupted while blocked

* ingeneral, itis now very hard to write code that is
uninterruptible for long periods (it has to be in a busy loop)

e Think of mask as switch to polling mode
* interruptible operations poll
* we know which ops poll, so we can use exception handlers
* asynchronous exceptions become synchronous inside mask



* hmm, don’t we have another problem now?

problem m f = mask $ \restore -> do
a <- takemvar m

r <- restore (f a) catch \e -> do putMvar m a; throw e
putMvar m r

* putMVar is interruptible too!

* interruptible operations only receive
asynchronous exceptions if they actually block

* |n this case, we can ensure that putMVar will
never block, by requiring that all accesses to
this MVar use a take/put pair, not just a put.

* Alternatively, use the non-blocking version of
putMVar, tryPutMVar



Async-exception safety

 |O code that uses state needs to be made safe
in the presence of async exceptions

e ensure that invariants on the state are
maintained if an async exception is raised.

* We make this easier by providing combinators
that cover common cases.

e e.g.the function problem we saw earlier is a
useful way to safely modify the contents of an
MVar:

modifyMvar_ :: Mvar a -> (a -> I0 a) -> I0 )



Making Chan safe

e We had this:

writeChan :: Chan a -> a -> I0 ()
writeChan (Chan _ writevar) val = do
new_hole <- newEmptyMvar

old_hole <- takeMvar writevar
putMvar writevar new_hole
putMvar old_hole (Item val new_hole)

* use modifyMVar_

writeChan (Chan _ writevar) val = do
new_hole <- newEmptyMvar

modifyMvar_ writevar $ \old_hole -> do
putMvar old_hole (Item val new_hole)
return new_hole




Software Transactional Memory



Software transactional memory

* An alternative to MVar for managing
— shared state

— communication

 STM has several advantages:
— compositional
— much easier to get right

— much easier to manage error conditions (including
async exceptions)



Example: a window-manager

File Edit Actions Tools Help

One desktop has

focus. The user can
change the focus.

The user can move windows from
one desktop to another.

Applications can move their own
windows, and pop-up new windows




How to implement this?

* Suppose we want to structure the window
manager in several threads, one for each
input/output stream:

— One thread to listen to the user
— One thread for each client application

— One thread to render the display

 The threads share the state of the desktops —
how should we represent it?



Option 1: a single MVar

type Display = Mvar (Map Desktop (Set window))

* Advantages:
— simple
* Disadvantages:

— single point of contention. (not only performance:
one misbehaving thread can block everyone else.)

e representing the Display by a process (aka the
actor model) suffers from the same problem

e Can we do better?



Option 2: one MVar per Desktop

type Display=Mvar(Map Desktop (Set window))

type Display = Map Desktop (Mvar (Set window))

This avoids the single point of contention, but a
new problem emerges. Try to write an operation

that moves a window from one Desktop to
another:

movewindow :: Display -> window -> Desktop -> Desktop

-> I0 (O
movewindow disp win a b = do

wa <- takemvar ma

wb <- takemvar mb

putMvar ma (Set.delete win wa)
putMvar mb (Set.insert win wb)
where

ma = fromJust (Map.lookup a disp)
mb fromJust (Map.lookup b disp)




movewindow :: Display -> window -> Desktop -> Desktop
-> I0 O

movewindow disp win a b = do
wa <- takeMvar ma
wb <- takemvar mb

Be careful to take both
Mvars before putting
the results, otherwise
another thread could
observe an inconsistent
intermediate state

putMvar ma (Set.delete win wa)

putMvar mb (Set.insert win wb)
where

ma = fromJust (Map.lookup a disp)

mb = fromJust (Map.lookup b disp)

Ok so far, but what if we have two concurrent calls to moveWindow:

Thread 1: movewindow disp wl a b

Thread 2: movewindow disp w2 b a

 Thread 1 takes the MVar for Desktop a

* Thread 2 takes the MVar for Desktop b

 Thread 1 tries to take the MVar for Desktop b, and blocks
 Thread 2 tries to take the MVar for Desktop a, and blocks
« DEADLOCK (“Dining Philosophers”)



How can we solve this?

* Impose a fixed ordering on MVars, make
takeMVar calls in the same order on every
thread
— painful

— the whole application must obey the rules
(including libraries)

— error-checking can be done at runtime, but
complicated (and potentially expensive)



STM solves this

type Display = Map Desktop (Tvar (Set window))

movewindow :: Display -> window -> Desktop -> Desktop -> IO ()

movewindow disp win a b = atomically $ do
wa <- readTvar ma
wb <- readTvar mb
writeTvar ma (Set.delete win wa)
writeTvar mb (Set.insert win wb)

where
ma = fromJust (Map.lookup a disp)
mb = fromJust (Map.lookup b disp)

 The operations inside atomically happen indivisibly to
the rest of the program (it is a transaction)

e ordering is irrelevant — we could reorder the readTVar
calls, or interleave read/write/read/write



e Basic STM API:

data STM a -- abstract
instance Monad STM -- amongst other things

atomically :: STM a -> I0 a

data Tvar a -- abstract

newTvar :: STM (Tvar a)

readTvar :: Tvar a -> STM a
writeTvar :: Tvar a -> a -> STM ()

* The implementation does not use a global
lock: two transactions operating on disjoint
sets of TVars can proceed simultaneously



Composability

 STM is composable
* e.g. write an operation to swap two windows

swapwindows :: Display
-> Window -> Desktop

-> Window -> Desktop
-> I0 O

* with MVars we would have to write a special-
purpose routine to do this...



e with STM we can build on what we already have:

swapwindows :: Display
-> Window -> Desktop
-> Window -> Desktop

-> I0 ()
swapwindows disp w a v b =
movewindowSTM disp w a b
movewindowSTM disp v b a

atomically $ do

* (moveWindowSTM is just moveWindow without
atomically — this is typically how STM operations are
provided)

 STM allows us to compose stateful operations into larger
transactions

e thus allowing more reuse

e and modularity — we don’t have to know how
moveWindowSTM works internally to be able to
compose it.



STM and blocking

* So far we saw how to use STM to build atomic
operations on shared state

e But concurrency often needs a way to manage
blocking — that is, waiting for some condition
to become true

— e.g. a channel is non-empty

e Haskell’s STM API has a beautiful way to
express blocking too...



retry :: STM a

that’s it!
the semantics of retry is just “try the current transaction again”
e.g. block until a TVar contains a non-zero value:

atomically $ do
X <- readTvar v

if x == 0 then retry
else return x

busy-waiting is a possible implementation, but we can do better:
* obvious optimisation: wait until some state has changed

» specifically, wait until any TVars accessed by this transaction so
far have changed (this turns out to be easy for the runtime to
arrange)

e soretry gives us blocking — the current thread is blocked
waiting for the TVars it has read to change



Using blocking in the window manager

* We want a thread responsible for rendering
the currently focussed desktop on the display

— it must re-render when something changes
— the user can change the focus
— windows can move around

* there is a TVar containing the current focus:

type UserFocus = Tvar Desktop

* 5o we can get the set of windows to render:

getwindows :: Display -> UserFocus -> STM (Set window)
getwindows disp focus = do

desktop <- readTvar focus
readTvar (fromJust (Map.lookup desktop disp))




NCI{H render :: Set window -> I0 ()

* Hereis the rendering thread:

renderThread Display -> UserFocus -> I0 ()
renderThread disp focus = do

wins <- atomically $ getwindows disp focus
Toop wins

where
lToop wins = do
render wins

next <- atomically $ do
wins' <- getwindows disp focus
1f (wins == wins')
then retry
else return wins'

loop next

so we only call render when something has changed.

The runtime ensures that the render thread remains blocked until either
e the focus changes to a different Desktop

the set of Windows on the current Desktop changes



* No need for explicit wakeups

* the runtime is handling wakeups
automatically

e state-modifying code doesn’t need to
know who to wake up — more
modularity

* no “lost wakeups” —a common type of
bug with condition variables



Channels in STM

* Earlier we implemented channels with MVars

e Instructive to see what channels look like in
STM

* Also we’ll see how STM handles composing
transactions that block

 And how STM makes it much easier to handle
exceptions (particularly asynchronous
exceptions)



data TChan a = TChan (Tvar (TvarList a))
(Tvar (TvarList a))

type TvarList a = Tvar (TList a)
data TList a = TNil | TCons a (TvarList a)

* Why do we need TNil & TCons?

* unlike MVars, TVars do not have an empty/full
state, so we have to program it

* Otherwise, the structure is exactly the same as the
MVar implementation

readTChan :: TChan a -> STM a
readTChan (TChan read _write) = do
listhead <- readTvar read
head <- readTvar 1listhead

case head of
TNi1l -> retry
TCons a tail -> do
writeTvar read tail

return a




Benefits of STM channels (1)

* Correctness is straightforward: do not need to
consider interleavings of operations
— (recall with MVar we had to think carefully about

what happened with concurrent read/write,
write/write, etc.)



Benefits of STM channels (2)

* more operations are possible, e.g.:

unGetTChan :: TChan a -> a -> STM ()
unGetTChan (TChan read _write) a = do

listhead <- readTvar read
newhead <- newTvar (TCons a listhead)
writeTvar read newhead

* (this was not possible with MVar, trivial with
STM)



Benefits of STM channels (3)

 Composable blocking. Suppose we want to
implement

readEitherTChan :: TChan a -> TChan b -> STM (Either a b)

e we want to write a transaction like

readEitherTChan a b = atomically $
(fmap Left $ readTChan a)
"Orlse

(fmap Right $ readTChan b)

OrElse :: STM a -> STM a -> STM a




OrElse :: STM a -> STM a -> STM a

execute the first argument

if it returns a value:

e thatis the value returned by orElse

if it retries:

 discard any effects (writeTVars) it did
* execute the second argument

orElse is another way to compose
transactions: it runs either one or the other



Benefits of STM channels (4)

* Asynchronous exception safety.

If an exception is raised during a transaction, the

effects of the transaction are discarded, and the
exception is propagated as normal

e error-handling in STM is trivial: since the effects are
discarded, all invariants are restored after an exception
is raised.

* Asynchronous exception safety comes for free!

* The simple TChan implementation is already async-
exception-safe



STM summary

 Composable atomicity
 Composable blocking

* Robustness: easy error handling
* Don’t believe the anti-hype!

 Why would you still use MVar?
— fairness
T CRVYELE] e
— performance



Lab

* Download the sample code here:

http://community.haskell.org/~simonmar/par-tutorial.tar.gz

* or get it with git:

git clone https://github.com/simonmar/par-tutorial.git

e code is in par-tutorial/code

* |ab exercises are here:

http://community.haskell.org/~simonmar/lab-exercises.pdf



